Герб МГТУ им. Н.Э. БауманаНаучно-техническая библиотека МГТУ им. Н.Э. Баумана

Подробное описание документа

Шамолин М. В.
   Интегрируемые динамические системы с диссипацией / Шамолин М. В. - М. : URSS : Ленанд, 2019.
   Кн. 1 : Твёрдое тело в неконсервативном поле. - 2019. - 455 с. - Библиогр.: с. 413-455. - ISBN 978-5-9710-6787-0.

Первый том предлагаемого цикла работ «Интегрируемые динамические системы с диссипацией» представляет собой обзор по полученным ранее, а также новым случаям интегрируемости в динамике двумерного, трехмерного, четырехмерного и многомерного твёрдого тела, находящегося в неконсервативном поле сил. Исследуемые задачи описываются динамическими системами со знакопеременной диссипацией.
Задача поиска полного набора трансцендентных первых интегралов систем с диссипацией также является достаточно актуальной, и ей было ранее посвящено множество работ. Введён в рассмотрение новый класс динамических систем, имеющих периодическую координату. Благодаря наличию в таких системах нетривиальных групп симметрий показано, что рассматриваемые системы обладают переменной диссипацией с нулевым средним, означающей, что в среднем за период по имеющейся периодической координате диссипация в системе равна нулю, хотя в разных областях фазового пространства в системе может присутствовать как подкачка энергии, так и её рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике твёрдого тела. В результате обнаружен ряд случаев полной интегрируемости уравнений движения в трансцендентных функциях и выражающихся через конечную комбинацию элементарных функций. Получены некоторые обобщения на условия интегрируемости более общих классов неконсервативных динамических систем (динамика четырёхмерного и многомерного твёрдого тела).

531.3 Динамика. Кинетика
1 экз.
Вы можете получить данный документ в одном из следующих отделов
  1. Преподавательский абонемент ауд.305л, УЛК, ауд. 305л
  2. Читальный зал ауд.305л, УЛК, ауд. 305л