Подробное описание документа
Шкапов П. М.
Устойчивость по Якоби детерминированных динамических систем с возможным хаотическим поведением / Шкапов П. М., Сулимов В. Д., Сулимов А. В. // Необратимые процессы в природе и технике : сборник статей 13-ой Всероссийской конференции, Москва, 28-30 января 2025 года : в 2 т. / МГТУ им. Н. Э. Баумана (национальный исследовательский университет). - 2025. - Т. 2. -
Рассмотрены задачи анализа устойчивости по Якоби динамических систем, эволюция которых во времени может представлять собой детерминированный хаос. В рамках теории Косамби — Картана — Черна вводится геометрическое описание динамической системы. Оценка устойчивости по Якоби определяется собственными значениями второго инварианты системы — тензора кривизны отклонения. Для точки равновесия системы Лоренца приведены результаты анализа устойчивости по Якоби, а также решение задачи восстановления параметров этой системы по собственным значениям второго инварианта в условиях ее хаотического поведения. Рассмотрено влияние начальных условий на устойчивость по Якоби нелинейного двойного маятника. На основе анализа траекторий в конфигурационном пространстве установлена связь между устойчивостью по Якоби двойного маятника и видом его движения (регулярное или хаотическое).
Ключевые слова: нелинейная динамическая система, устойчивость по Якоби, теория Косамби — Картана — Черна, геометрический инвариант
Статья опубликована в следующих изданиях
Т. 2. - 2025. - 482 с. : ил. - Библиогр.