Подробное описание документа
Облакова Т. В.
Сравнительное моделирование на основе многочленов Колмогорова-Габора в задачах полиномиального хаоса и регрессии / Облакова Т. В., Фам Куок Вьет // Математическое моделирование и численные методы. - 2023. - № 4. -
Рассмотрено применение обобщенного разложения полиномиального хаоса (ПХ) и модели на основе полиномов Колмогорова-Габора в задачах регрессии. При выборе разложения ПХ использовалась схема Винера-Аски, задающая соответствие между законом распределения признаков и ортогональным полиномиальным базисом. Для вычисления коэффициентов разложения применялись неинтрузивные методы: наименьших квадратов, эластичная сеть, а также индуктивный эволюционный алгоритм Ивахненко. В качестве эталонной функции полиномиальной нейронной сети использованы полиномы Колмогорова-Габора. Ошибки модели и скорость работы вычислялись на тестовой выборке. Проведено сравнение моделей на линейной транспортной задаче в условиях неопределенности: коэффициент диффузии и снос моделировались равномерно распределенными случайными величинами. Показано, что при небольшом интервале изменения значений случайных величин обе модели дают хорошую эффективность, но модель ПХ демонстрирует меньший разброс ошибок и быстрее по времени. Для уравнения распада со случайными коэффициентами, распределенными по гауссовскому закону, изучено влияние корреляции этих коэффициентов на скорость сходимости. Продемонстрировано, что при зависимых коэффициентах наилучшие показатели наблюдаются у моделей ПХ более высокого порядка. На основе сравнительного моделирования установлено, что применение ПХ однозначно предпочтительнее в случаях: малой размерности пространства входных признаков, известном законе распределения входных данных, при коррелированности признаков. Также показано, что применение ПХ при большой размерности пространства входных признаков неэффективно из-за быстрого увеличения числа членов в разложении, приводящего к резкому росту времени на обработку задачи. В этом случае однозначно предпочтительнее оказалась регрессионная модель на основе полиномов Колмогорова-Габора в сочетании с МГУА.
Ключевые слова полиномиальный хаос, полиномиальная нейронная сеть, метод группового учета аргументов, полиномы Колмогорова-Габора, линейные транспортные задачи, уравнение распада
519.2 Теория вероятностей и математическая статистика
