Герб МГТУ им. Н.Э. БауманаНаучно-техническая библиотека МГТУ им. Н.Э. Баумана

Подробное описание документа

Алгазин С. Д.
   Численные алгоритмы без насыщения в классических задачах математической физики / Алгазин С. Д. - М. : Научный мир, 2002. - 155 с. - Библиогр.: с. 154-155. - ISBN 5-89176-184-X.

В книге рассматривается новый подход к конструированию алгоритмов математической физики. В основном рассматриваются спектральные задачи для обыкновенных дифференциальных уравнений, уравнения Лапласа (три краевых
задачи) и бигармонического уравнения (две краевые задачи).
Классический подход, основанный на применении методов конечных разностей и конечных элементов, обладает существенными недостатками – он не реагирует на гладкость отыскиваемого решения. Для разностной схемы р-го порядка в независимости от гладкости отыскиваемого решения погрешность метода -О(hp). Гладкость решения определяется входными данными задачи. Рассматриваемые в книге алгоритмы свободны от этих недостатков.
Предлагаемые алгоритмы автоматически настраиваются на гладкость отыскиваемого решения и их точность тем выше, чем большим условиям гладкости отвечает отыскиваемое решение. Для рассматриваемых задач на собственные значения для обыкновенных дифференциальных уравнений эксперементально показано, что убывание погрешности - экспоненциально. гогого невозможно добиться методами конечных разностей и конечных элементов.
Для двумерных задач громоздкие вычисления затабулированы в таблицах небольшого объёма, что позволяет разработать компактные алгоритмы решения поставленных задач. Приводятся программы на фортране.
Монография представляет интерес для студентов и аспирантов физико- технических и математических специальностей, специалистов по численным методам, а также для научных сотрудников и инженеров, интересующихся но- выми методами численного решения задач математической физики.

530.1 Основные теории (принципы) физики
1 экз.
Вы можете получить данный документ в одном из следующих отделов
  1. Преподавательский абонемент ауд.313, ГУК, ауд. 313
  2. Читальный зал ауд.313, ГУК, ауд. 313