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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Проблема повышения точности автономных навигационных систем неразрывна связана с проблемой повышения эффективности их виброзащиты. Совершенствование гиросистем, не защищенность которых от внешних вибраций приводит к возникновению динамических погрешностей, в большой степени зависит от повышения их динамической точности, в свою очередь зависящей от их резонансных свойств. 

    Демпфирование колебаний гиросистем сопряжено с выполнением  противоречивых требований обеспечения статической и динамической точности и устойчивости. При этом увеличение демпфирующих моментов относительно осей карданова подвеса, с одной стороны, повышает степень устойчивости гиросистемы (ГС), а с другой стороны - ухудшает характеристики ее вынужденного движения в диапазоне низких частот. Существенно облегчить задачу виброзащиты слабо демпфируемых гиросистем и сгладить противоречие между точностью и устойчивостью позволяет способ динамического гашения колебаний.

    Большинство работ, посвященных теме применения динамического гашения колебаний в гиросистеме, ограничено применением традиционных динамических гасителей пассивного типа с постоянной или переменной структурой. Традиционный гаситель при отсутствии вязкости позволяет получить эффект полного гашения колебаний главной массы лишь при одном значении частоты возмущающей гармонической силы, которая совпадает с его парциальной частотой. Эффективность пассивного гасителя существенно зависит от соотношения масс (моментов инерции) гасителя и объекта демпфирования. С целью повышения эффективности динамического гасителя колебаний (ДГК), расширения его рабочего диапазона и получения новых возможностей инерционного демпфирования ГС, в работе предложена схема гасителя с активной обратной связью.

    Актуальность и практическая целесообразность работы обусловлена необходимостью решения задачи повышения динамической точности и эффективности виброзащиты ГС, расширения частотной области гашения колебаний, уменьшения габаритно-массовых характеристик ГС с гасителем.

    Цель диссертационной работы состоит в исследовании возможности улучшения динамических характеристик инерционно демпфируемых гиросистем на основе разработки способов расширения резонансно безопасных зон от полигармонических возмущений и обеспечения астатизма гиросистем при моногармонических возмущениях.

    Для достижения поставленной цели были решены следующие научно-технические задачи:
  Анализ существующих схем динамического гашения колебаний ГС с целью определения их основных недостатков и преимуществ;
  Разработка математических моделей объекта демпфирования и ГС с активным динамическим гасителем колебаний;
  Синтез алгоритмов оптимального гашения резонансных колебаний ГС активным динамическим гасителем;
  Создание виртуальной системы и программ для вычислительно-экспериментальных исследований динамических характеристик ГС с активным ДГК.
    Методы исследования, использованные для решения поставленных задач: методы теоретической механики, теория колебаний, теория автоматического регулирования. При моделировании применялись пакеты прикладных программ «Matlab», «Simulink» и «Mathcad».

    Научная новизна диссертационной работы заключается в следующем:
  Предложен способ демпфирования вибрационных колебаний ГС;
  Разработана математическая модель ГС с активным гасителем; 
  Осуществлен синтез алгоритмов оптимального гашения колебаний ГС;
  Разработана методика оптимизации параметров активного динамического гасителя;
  Разработан алгоритм оптимального демпфирования вибрационных колебаний ГС активным динамическим гасителем с ограниченной интенсивностью исполнительного элемента.

    Практическая значимость
  1. Предложенные новые схемы активного гасителя могут быть использованы для демпфирования вынужденных колебаний ГС при действии внешних возмущений.

  2. На основе предложенных методик оптимизации параметров сформированы алгоритмы, позволяющие создать структуру ГС с активным гасителем повышенной эффективности гашения колебаний.

  3. Для проектирования и расчета активного гасителя разработаны методики, а для исследования системы создан программный комплекс.

  4. Имитатор, созданный на основе разработанной методики проектирования гиросистемы с активным гасителем, позволяет проводить вычислительно-экспериментальные исследования.

  5. Предложенные методики проектирования и вычислительного  исследования ГС с активным гасителем могут быть использованы при решении задачи гашения колебаний механических систем подобного класса.

    Внедрение результатов работы. Разработанный в диссертации программный комплекс используется в учебном процессе на кафедре «Приборы и системы ориентации, стабилизации и навигации» МГТУ им. Н.Э. Баумана, а также на кафедре «Навигационные приборы и системы» Харбинского Инженерного Университета.

    Основные результаты и положения, выносимые на защиту
  1. Способ демпфирования колебаний ГС с активным динамическим гасителем.

  2. Математическая модель ГС с активным динамическим гасителем.

  3. Алгоритмы оптимального гашения резонансных колебаний гиросистемы.

  4. Алгоритм оптимального виброгашения в ГС активным гасителем с ограниченным по амплитуде управлением.

  5. Методика проведения и результаты вычислительно экспериментальных  исследований.

    Апробация работы и публикации. Основное содержание и результаты диссертации изложены в 5 научных работах, одна из них опубликована в журнале, входящем в Перечень ВАК.

Основные положения и результаты работы докладывались на международных и всероссийских конференциях:
- XXVI Всероссийская конференция памяти выдающегося конструктора гироскопических приборов Н.Н. Острякова, 14-16 октября 2008 г., г. Санкт-Петербург.
- Всероссийская конференция по проблемам космонавтики России, 15-17 января 2008 г., г. Москва. 

Объем работы. Диссертация состоит из введения, четырех глав, общих выводов, списка литературы. Общий объем работы - 159 страниц, в том числе 103 рисунка.

Содержание работы
    Во введении приводится обзор известных публикаций в данной области. Формулируются цель и задачи исследований. Обосновывается актуальность диссертационной работы. Излагаются научная новизна и практическая значимость. Приведен обзор содержания диссертации по главам.

    В первой главе рассмотрены динамические характеристики гиросистемы как объекта инерционного демпфирования, изучена многомассовая механическая система-аналог динамических свойств ГС с упруго-диссипативными связями. Уравнения движения одного из каналов ТГС многомассовой гиросистемы силового типа с упруго-диссипативными связями динамических элементов описаны в векторно-матричной форме:
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- матрица моментов инерции динамических элементов (матрица кинетической энергии); 
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- матрицы жесткостей (потенциальной энергии) размерности nхn;
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- матрица вязкого трения (диссипативной энергии) размерности nхn.
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	Рис.1. Кинематическая схема ТГС при учете конечной жесткости элементов конструкции гиросистемы и ее механический аналог динамических свойств одного из каналов


Уравнение движения (1) в операторной форме имеет вид:
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- передаточные функции податливости, причем   диагональные и внедиагональные передаточные функции податливости соответственно имеют вид
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Для резонансных и антирезонансных частот 
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На основе матрицы передаточных функций податливости рассмотрены собственные и антирезонансные частоты ГС. Показано, что АЧХ диагональных динамических элементов матрицы передаточных функций податливости с n степенями свободы имеет n резонансов и n-1 антирезонансов, при которых амплитуды колебаний возбуждаемого элемента ГС на сухом подвесе близки к нулю. Проанализированы частотные характеристики многомассовой ГС с закрепленным концом. Исследована ГС с пассивным гасителем колебаний (постоянной и переменной структуры) как объект демпфирования, рассмотрены ее АЧХ  при 
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	Рис. 2. АЧХ ГС с пассивным гасителем: 1 - АЧХ объекта демпфирования; 2 - АЧХ ГС с оптимальным  вязким трением; 3 - АЧХ ГС при отсутствии вязкого трения; 4 - АЧХ ГС с переменной структурой; 
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 - парциальная частота объекта демпфирования; 
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    Показано, что эффективность пассивного динамического гасителя определяется отношением присоединенной массы (момента инерции) и массы объекта демпфирования. При малой массе маховика демпфера полоса гашения оказывается весьма узкой, а введение вязкого трения в гаситель несколько расширяя полосу гашения, приводит к значительному подъему амплитудно-частотной характеристики в диапазоне гашения 
[image: image21.wmf]DW

.
Вторая глава посвящена исследованию демпфирования резонансных колебаний двухмассовой гиросистемы. Предложен способ улучшения динамических характеристик инерционно-демпфируемой гиросистемы путем введения в пассивный гаситель активной обратной связи по позиционному и скоростному относительному перемещению присоединенной массы и объекта демпфирования. 
Динамический гаситель с обратной связью (рис. 3) представляет собой инерционную массу (1), упруго связанную с демпфируемым объектом и обратную связь, включающую в себя датчик угла закручивания (4), измеряющий относительный угол поворота объекта и гасителя, усилитель (2) и двигатель (3), статор которого жестко соединен с корпусом, а ротор с объектом. Сигнал с датчика угла (4) поступает через усилитель (2) на двигатель (3). Динамический гаситель может быть установлен на оси наружной рамки (а), или на оси внутренней рамки (б). Оба вида установки гасителя являются эквивалентными.
Уравнения движения гиросистемы с активным гасителем, установленным на оси наружной рамки карданова подвеса, записаны в виде:
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где 
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- приведенные моменты инерции гиросистемы относительно наружной и внутренней осей карданова подвеса ГС, 
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- абсолютные углы поворота ГС относительно наружной и внутренней осей карданова подвеса, 
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- момент инерции и угол поворота маховика демпфера относительно оси, на которой он установлен, 
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- коэффициенты упругой и диссипативной связи гасителя, 
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- коэффициенты позиционной и гибкой активной обратной связи, 
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	Рис. 3. ГС с активным гасителем 
	Рис. 4. Структурная схема 

ГС с активным гасителем


    Уравнения (3) относительно вектора обобщенных координат в области изображений могут быть записаны в виде:
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Гиросистема с активным гасителем представлена в виде системы с отрицательной обратной связью (рис. 4), где
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 - передаточная функция объекта демпфирования,      
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При этом передаточная функция  замкнутой системы 
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- динамический коэффициент подавления колебаний, величиной которого оценивается мера виброизоляции. В полосе гашения динамический коэффициент подавления колебаний меньше единицы 
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 (рис. 5).                                  
   Оптимизация параметров ДГК осуществляется на основе критерия minmaxАЧХ податливости в месте установки гасителя. При этом в полосе гашения minmax
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, а полоса гашения определяется разностью инвариантных (по отношению к обратной связи) частот:


[image: image42.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

-

-

+

+

=

W

-

W

=

DW

*

*

*

*

*

*

c

c

c

c

n

2

1

2

1

1

1

2

,

где 
[image: image43.wmf](

)

M

C

K

+

=

*

1

c

c

, 
[image: image44.wmf]1

J

J

M

=

c

.
	
[image: image45.png]




	Рис. 5. Динамический коэффициент подавления колебаний.


    Введение активной обратной связи эквивалентно увеличению момента инерции присоединенной массы в 
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 раз и проявляется в изменении (в нужном направлении) собственных (резонансных) частот ГС, расширяя полосу гашения свободную от собственных частот и не влияя при этом на ее антирезонансные свойства. 
Эффективность активного гашения колебаний по сравнению с пассивным оценивается отношением коэффициентов максимального усиления АЧХ податливости: 
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 - коэффициент максимального усиления АЧХ для пассивного гасителя. При 
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, т.е. minmaxАЧХ ГС с активным гасителем в 6.4 раз меньше, чем с пассивным.
   С целью обеспечения устойчивости ГС с активным гасителем, исключения возможности возникновения резонанса на собственных частотах, связанной с блужданием частоты внешнего воздействия в непосредственной близости от частоты настройки, а также с целью придания гасителю свойств полигармонического демпфера введены диссипативные связи - пассивные и активные. Разработаны алгоритмы оптимизации диссипативных связей, обеспечивающие максимум АЧХ податливости в инвариантных точках, и, следовательно, обеспечивающие подавление колебаний во всем диапазоне частот с относительной амплитудой, не превышающей статическую податливость более чем в 
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	Рис. 6. Относительные АЧХ ГС с гасителем: 1 – АЧХ объекта демпфирования; 2 – АЧХ ГС без вязкого трения (
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); 3 – АЧХ ГС с оптимальной настройкой и оптимальным коэффициентом вязкого трения (
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На рис. 6. представлены относительные АЧХ податливости ГС с активным динамическим гасителем (сплошные кривые) и следующими параметрами: 
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. Здесь же для сравнения построены АЧХ ГС с пассивным динамическим гасителем (см. пунктирные кривые). В обоих случаях параметры гасителя соответствуют оптимальной настройке. Видно, что введение активной обратной связи существенно расширяет полосу гашения колебаний и уменьшает их амплитуду.
Рассмотрена принципиальная возможность и достижимая эффективность построения астатической системы для диагональных элементов матрицы податливости при моногармонических возмущениях путем соответствующей настройки гасителя, установленного на перекрестной оси. Эта возможность обусловлена зависимостью полюсов обратной связи от коэффициента усиления 
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 активной обратной связи гасителя, установленного на перекрестной оси, что создает условия для настройки гасителя на частоту внешнего возмущения. Проанализированы АЧХ ГС с динамическим настраиваемым гасителем, исследовано влияние погрешностей измерения частоты внешних возмущений на АЧХ ГС, а также рассмотрены вынужденные колебания системы при действии внешних возмущений.
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	Рис. 7.  Реакции ГС с пассивным (
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(
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) и активным (
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) гасителем на синусоидальное (а) и ступенчатое (б) внешние воздействия


В третьей главе рассмотрено демпфирование резонансных колебаний многомассовой гиросистемы активным гасителем. Рассмотрена разветвленная структура гиросистемы с активным гасителем и проанализированы ее АЧХ. 
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	Рис. 8. Механический аналог динамических свойств многомассовой гиросистемы последовательной структуры


    Уравнения движения многомассовой ГС цепной структуры, кинематическая схема аналога динамических свойств которой представлена на рис. 8, записаны в векторно-матричной форме:

[image: image68.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

×

+

×

+

×

-

+

+

×

-

+

+

+

×

+

+

×

+

×

-

+

×

-

+

+

×

+

+

×

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

M

M

M

M

M

M

M

M

M

M

C

s

s

J

C

s

K

C

s

K

C

C

s

D

s

J

C

s

D

C

s

D

C

C

s

D

D

s

J

2

1

1

2

2

2

2

2

2

2

2

2

2

1

2

1

2

1

2

1

)

(

0

)

(

)

(

)

(

0

)

(

)

(

m

m

m

m

a

a

a

.   (4)  
Показано, что если спектр частоты возмущений находится в диапазоне первого или второго резонансного пика, гашение вынужденных колебаний осуществляется при помощи настройки гасителя на первую или вторую частоту резонанса соответственно. Показано, что максимальный эффект гашения колебаний достигается при установке гасителя непосредственно на объект демпфирования. Чем дальше от объекта демпфирования в цепной системе установлен гаситель, тем ниже его эффективность. Относительные АЧХ податливости ГС с активным гасителем, установленным на динамическом элементе 
[image: image69.wmf]2

J

, представлены на рис. 9.  

Те же АЧХ податливости ГС с гасителем, у которого введена диссипативная оптимальная связь, имеют вид, показанный на рис. 10. Как видно, в случае непосредственной установки гасителя на объекте демпфирования, введение вязкого трения позволяет гасить вынужденные колебания во всех резонансных диапазонах при настройке гасителя на первую частоту резонанса (кривая 1 на рис. 10, а), а настройка на второй резонансный пик не дает существенного эффекта из-за недемпфированного первого пика (кривая 2 на рис. 10, а). В случае установки гасителя вне демпфируемого элемента введением вязкого трения не удалось подавить два резонансных пика одновременно (рис. 10, б). 
Кроме того, подавление резонансных пиков ГС можно провести путем самонастройки активной обратной связи, которая осуществлена регулированием коэффициента усиления. При этом в широком диапазоне частот 
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 (где 
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- частоты включения и отключения активной обратной связи соответственно), подавление вынужденных колебаний ГС с динамическим настраиваемым гасителем вокруг оси стабилизации выполняется при настройке на частоту, совпадающую с частотой внешних возмущений.
    Рассмотрена принципиальная возможность настройки гасителя на частоту внешних возмущений, установленного непосредственно на объекте демпфирования. 
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	Рис. 9. Относительные АЧХ податливости ГС с активным гасителем. а - объект демпфирования 
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, б - объект демпфирования 
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, 1- настройка гасителя на первую резонансную частоту, 2- настройка на вторую резонансную частоту
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	Рис. 10. Относительные АЧХ ГС с активным гасителем с вязкостью


    Четвертая глава посвящена исследованию вынужденных колебаний и автоколебаний ГС с нелинейной активной обратной связью. Рассмотрено влияние сопутствующих нелинейностей в цепи обратной связи типа «зона нечувствительности» датчика угла и датчика угловой скорости, ограничение моментной характеристики исполнительного устройства  и  т.д.  на динамические  характеристики ГС. Показано, что устойчивость линейной системы является достаточным условием устойчивости ГС с однозначной нелинейностью в секторе [0,1] в цепи активной обратной связи. На основе анализа фильтрующих свойств  приведенной линейной части дается обоснование применимости метода гармонической линеаризации для исследования околорезонансных периодических режимов. Получены условия возникновения автоколебаний и неустойчивых периодических режимов в ГС с нелинейностью из сектора [0, 1] в цепи активной обратной связи.
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	Рис. 11. Графическое решение уравнения (5)


     На основе метода гармонической линеаризации исследуются также вынужденные колебания нелинейной ГС. Решение при этом отыскивается в виде:
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На рис. 11 представлено графическое решение уравнения,  связывающего амплитуду 
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 и фазу 
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 вынужденных колебаний с параметрами ГС и внешнего возмущения
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где 
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 - амплитуда внешних возмущений, 
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 - ограничение интенсивности датчика момента. Показано, что в ГС с нелинейной обратной связью пороговое значение амплитуды внешнего воздействия, при котором происходит «захват» и в нелинейной системе наблюдаются одночастотные вынужденные колебания (рис. 12, а), равно нулю, если параметры линейной части соответствуют области устойчивости. В ГС с параметрами линейной части из области неустойчивости и нелинейности типа «ограничение» при амплитуде внешнего возмущения меньше порога захвата имеют место двухчастотные колебания (рис. 14, б), а с нелинейностью типа «зона нечувствительности» имеет место неустойчивый предельный цикл, характеризующий устойчивость системы в «малом».
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	Рис. 12. Вынужденные одночастотные (а) и двухчастотные (б) колебания в нелинейной ГС
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	Рис. 13. Вынужденные колебания ГС с активным гасителем ограниченной интенсивности (
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    Разработан алгоритм оптимального виброгашения вынужденных колебаний ГС активным динамическим гасителем с ограниченным по амплитуде управлением 
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- интегральные соотношения, связывающие искомую функцию управления 
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Если момент обратной связи, ограниченный по амплитуде, прикладывается к объекту демпфирования не в противофазе (кривые а на рис. 13), тогда амплитуда вынужденных колебаний ГС оказывается относительно большой. При включении дополнительно к жесткой обратной связи еще и гибкой связи по угловой скорости закручивания в соответствии с оптимальным законом управления (6) компенсационный момент действует на объект демпфирования в противофазе возмущающему моменту (кривые b на рис. 13), амплитуда вынужденных колебаний при этом уменьшается более чем в 3 раза. Таким образом, в случае одночастотных возмущающих воздействий с известной частотой 
[image: image104.wmf]w

 закон противофазного управления (6) обеспечивает оптимальное гашение вынужденных колебаний. Если частота внешнего возмущения заранее не известна, то алгоритм гашения колебаний должен включать определение (вычисление) частоты или фазы колебаний.

ОСНОВНЫЕ ВЫВОДЫ ДИССЕРТАЦИИ

1. Предложен способ улучшения динамических характеристик инерционно демпфируемой ГС на основе расширения резонансно безопасной зоны введением активной обратной связи по позиционному и скоростному перемещению присоединенной массы относительно объекта демпфирования.

2. Разработана математическая модель демпфирования нутационных и упругих колебаний ГС с упруго-диссипативными связями динамических элементов активным гасителем. В рамках этой модели сформулированы требования к АФХ разомкнутой цепи ГС, обеспечивающие подавление колебаний в заданном диапазоне частот по крайней мере в (n) раз по сравнению с колебаниями недемпфированной системы.

3. Разработаны алгоритмы синтеза активного оптимального гашения резонансных колебаний ГС по критерию minmax АЧХ податливости, обеспечивающие усиление относительной АЧХ податливости ГС не более чем в 
[image: image105.wmf]K
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 раз во всем частотном диапазоне, что исключает возможность возникновения резонанса на собственных частотах, связанную с блужданием частоты внешнего воздействия в непосредственной близости от частоты настройки под действием факторов случайного характера, и придает гасителю свойства полигармонического демпфера.
4. Показана принципиальная возможность осуществления астатизма ГС по внешнему моногармоническому возмущению путем самонастройки активной связи гасителя, установленного на перекрестной оси, на частоту внешнего воздействия.
5. Установлено, что устойчивость линейной системы является достаточным условием отсутствия автоколебаний, а также неустойчивых периодических решений в ГС с любой однозначной нелинейностью из сектора [0, 1] в цепи активной обратной связи. Получены условия возникновения предельных циклов.
6. Показано, что в ГС с нелинейной обратной связью при внешнем гармоническом воздействии происходят одночастотные вынужденные колебания (амплитуда захватывания равна нулю), если параметры линейной части ГС соответствуют области устойчивости. В противном случае, в ГС с нелинейностью типа «ограничения» в цепи активной обратной связи при амплитуде внешнего возмущения меньше амплитуды захватывания имеют место двухчастотные колебания, а в ГС с нелинейностью типа «зона нечувствительности» имеет место неустойчивый предельный цикл, характеризующий устойчивость системы «в малом».

7. Сравнительная оценка эффективности гашения колебаний ГС активным и пассивным демпфером подтвердила, что активный динамический гаситель позволяет существенно расширить полосу гашения недемпфированных моногармонических колебаний и существенно повысить эффективность подавления демпфированных вынужденных колебаний во всем частотном диапазоне полигармонических возмущающих воздействий.
8. Даны оценки предельных возможностей виброзащитной системы для определенных классов внешних возмущений и свойств сопряженных конструкций.
9. Разработан программный комплекс для вычислительно- экспериментальных исследований ГС с активным гасителем. Проведены вычислительно-экспериментальные исследования ГС, подтверждающие теоретические исследования.
10. Разработанные для ГС способы, алгоритмы и методики улучшения динамических характеристик приемлемы для механических систем широкого класса цепной структуры с упруго диссипативными связями динамических элементов.
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