На правах рукописи

Денисов Дмитрий Геннадьевич

РАЗРАБОТКА МЕТОДОВ И АППАРАТУРЫ ЛАЗЕРНОГО ИНТЕРФЕРЕНЦИОННОГО КОНТРОЛЯ ФОРМЫ И КАЧЕСТВА ОПТИЧЕСКИХ ПОВЕРХНОСТЕЙ КРУПНОГАБАРИТНЫХ ЗЕРКАЛ НА СТАДИЯХ ШЛИФОВАНИЯ

05.11.07 - Оптические и оптико-электронные приборы и комплексы

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

And Chi

Москва 2010

Работа выполнена в Московском государственном техническом университете имени Н.Э. Баумана на кафедре «Лазерные и оптикоэлектронные системы»

Научный руководитель: Карасик Валерий Ефимович, доктор технических наук, профессор

Официальные оппоненты: Сычёв Виктор Васильевич, доктор технических наук, профессор МГТУ им. Н.Э. Баумана

> Тимашов Анатолий Петрович, кандидат технических наук, ОАО «Научно – производственная корпорация «Системы прецизионного приборостроения»

Ведущая организация:

ОАО «Лыткаринский завод оптического стекла», г. Лыткарино, Моск. обл.

Защита диссертации состоится «19» мая 2010 года в 12:00 часов на заседании диссертационного совета Д212.141.19 в Московском государственном техническом университете имени Н.Э. Баумана по адресу: 105005, г. Москва, 2-я Бауманская, д. 5.

С диссертацией можно ознакомиться в библиотеке МГТУ им. Н.Э. Баумана.

Отзыв в одном экземпляре, заверенный печатью организации, просим направить по адресу: 105005, г. Москва, 2-я Бауманская ул., д. 5, МГТУ им. Н.Э. Баумана, ученому секретарю диссертационного совета Д 212.141.19.

Автореферат разослан «____» ____ 2010 г.

Ученый секретарь диссертационного совета доктор технических наук

Бурый Е.В.

,

,

,

,

, ,

			•	
«	»		*	»
	,			
«	»	»	«	
	«	- 2007» (,	_ V _
2007 .), «	XVI, XVII, XV	/111 » (≫,
- 2010 .), «	ХХ ,	, »(, 2009 .).	
	_ _		•	
	,	84	, ,	
76	21	. 184		
		9		•
			2	
	_	:	4 –	
,	_	,	,	
	,		·	
		,	,	

, . --

(

(.1), ...

1:2,5

)

I – осветительная ветвь :

- 1 *CO*₂-лазер, 2 *HeNe*-лазер реперного канала,
- 3, 4- наклонные зеркала,
- 5 телескопическая система,
- 6 зеркальная система
- ввода излучения, 7 фокусирующий объектив;
- II эталонная ветвь:
- 8 эталонное сферическое зеркало,
- 11 9 светоделительный кубик;
 - III измерительная ветвь:
 - 10 компенсатор волнового фронта,
 - 11 контролируемая деталь;
 - IV регистрирующая ветвь:
 - 12 объектив сопряжения,
 - 13 болометрическая камера,
 - 14 изображение диафрагмы

контролируемого зеркала 11 (полевая диафрагма)

. 1.

 $l_{K}^{2} = \left(2 \cdot \rho_{K}\right)^{2} >> \sigma_{h}^{2}$ $l_{K} = (2 \cdot \rho_{K}) >> \lambda - ($) (1) , $\frac{2\pi}{\lambda} \cdot R \quad \cdot \cos \Theta \quad >> 1 \sigma_{\scriptscriptstyle h}$ -; (); ; $\cos \Theta$

,

:

; R -Θ ; λ -

,

,

,

:

 l_{κ} -

 $\rho_{\scriptscriptstyle K}$ -

,

4 () M10 (). , • (.2,), ,

> 2, _

_

,

:

$$C = \langle I(x, y)_{max} \rangle - \langle I(x, y)_{min} \rangle / \langle I(x, y)_{max} \rangle + \langle I(x, y)_{min} \rangle = \exp(-8 \cdot \pi^{2} \cdot (\sigma_{h}/\lambda)^{2}), \quad (2)$$

$$\langle I(x, y)_{max} \rangle \quad \langle I(x, y)_{min} \rangle -$$

$$; \sigma_{h} -$$

$$; \langle \rangle -$$

_

;

_

•

(2)

().

$$\sigma_{l} \cdot \frac{1}{\sigma_{k}} = \sigma_{l}/\langle l \rangle = \sqrt{l - \exp\left(-2\left((2 \cdot 2\pi/\lambda)^{2} \cdot \sigma_{k}^{2}\right)\right)}, \qquad (3)$$

$$\sigma_{l} \cdot \frac{1}{\sigma_{k}} \cdot$$

30 100 .

,

,

;

$$C_{SQ} = C_{SM} / \sqrt[4]{1 + 2 \cdot \pi^2 \cdot (\Delta \nu / \nu_0)^2 \cdot (\sigma_h / \lambda)^2 \cdot (\cos \Theta_0 + \cos \Theta_i)^2}, \qquad (4)$$

$$C_{SM} - -$$

$$; \Delta \nu = c/l = \Delta \lambda / \lambda^2 -$$

$$1/e^2; l - ; c - \nu_0 = c/\lambda - , \qquad (4)$$

$$\lambda; \Theta_h^-$$
; Θ_0, Θ_i^-

5

 Δv

. 5.

$$\Delta v: 1) \quad \Delta v_{1} = 1 \cdot 10^{6} \quad ; 2) \quad \Delta v_{2} = 10 \cdot 10^{6} \quad ; 3) \quad \Delta v_{3} = 100 \cdot 10^{6} \quad ; 4) \quad \Delta v_{4} = 1000 \cdot 10^{6} \quad ; \\ 1) \quad \Delta v_{1} = 1 \cdot 10^{6} \quad ; 2) \quad \Delta v_{2} = 3 \cdot 10^{6} \quad ; 3) \quad \Delta v_{3} = 10 \cdot 10^{6} \quad ; 4) \quad \Delta v_{4} = 100 \cdot 10^{6} \quad ; \\ 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 4) \quad \Delta v_{4} = 100 \cdot 10^{6} \quad ; 4) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad \Delta v_{5} = 1000 \cdot 10^{6} \quad ; 5) \quad$$

$$- (C_{sq} \approx 1, \dots, 5)$$

K=0,3 (.6).

$$\Delta v = 2 \cdot 10^6$$

Этапы алгоритма подавления спекл – структуры

(.7)

_

1.

()	,	, (-)	, (-)	$\Delta_{\sigma}, \%$,
4	47	1,49	1,47	1,3	0,2
		-			
M40	32	0,9	0,87	3	0,6
M28	18	0,8	0,76	5	0,8

,

Ge ZnSe.

,

-

,

:

1. - $0,03\lambda$. 2. 20 3. : , 4. , , 5. $\sigma_{_h}/\lambda$, (, 0,2 0,8). 6. 4 – : , , , 0,3 0,5. 7. 20 .

 $(1 \cdot 10^6 < \Delta \nu < 3 \cdot 10^6),$

-

			K=0,3.	CO2 -		
0		Δ	$v = 2 \cdot 10^6$			
8.	_		,			-
						-
				,		,
	1	•,	• •,			<u>:</u> -
	C 15 – 24			//		. 2009. 3.
	2	•, //		2009	3 27 _ 3	n
	3	·, 2007·	 V	. 2009.	5 21 – 5	0.
	4	- 2007.	· · · ·	, 2007.	. 50 – 53.	_
		•,	•••	-	/	/
		:	2008	16 – 109 – 114	,,	
	5	•••				-
	16 –		,	//		:
	, 2008 . 6.	. 114 – 119.				_
		•		17 –	/.	/
	7	•	, 2009	114 – 120.		_
		.,	_			-
	//	_		:	18 – . 2010 .	- . 121 – 127.
	8	••	• •,	• •	,	
	//		, .	: .	. XX	-
	82.		_ ,		. , 2	009 78 –