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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. Основными причинами возникнове-
ния погрешностей обработки на металлорежущих станках являются недоста-
точная точность и жесткость оборудования, неточность изготовления и недо-
статочная жесткость режущего и вспомогательного инструмента, погрешности 
базирования и закрепления приспособления и заготовки при неверном выборе 
комплектов технологических баз на станке, деформации при зажиме или под 
действием нагрева и сил резания, погрешности в процессе измерения. 

Нивелировать или свести к минимуму влияние и значение некоторых из 
перечисленных погрешностей позволяет применение металлорежущих станков 
с ЧПУ и высокоточной технологической оснастки. Более высокая точность при 
обработке заготовок на станках с ЧПУ по сравнению с точностью при обработ-
ке на станках с ручным управлением достигается благодаря уменьшению влия-
ния «человеческого фактора». Тем не менее сохраняются неблагоприятные 
факторы, на которые система с ЧПУ не способна повлиять. К таким факторам 
относятся процесс базирования и закрепления заготовок в рабочей зоне станка. 

При изготовлении деталей важными являются правильность решения 
задач закрепления заготовок в рабочей зоне станка с ЧПУ, а также выбор при-
способления и его параметров для закрепления. Процесс базирования и за-
крепления заготовок усложняется при изготовлении корпусных деталей из-за 
многообразия геометрических форм элементов, неравномерности жесткости 
готового изделия, больших габаритных размеров и различий в требованиях к 
точности. 

Проведенный анализ показал, что корпусные детали составляют 27% от 
общего количества деталей в машиностроении, при этом трудоемкость их об-
работки составляет около 60% от общей трудоемкости. 

При единичном и мелкосерийном производстве для фрезерной обработки 
корпусных деталей оптимальным решением является использование фрезерных 
станков с ЧПУ, оснащенных поворотным столом с точным позиционировани-
ем. При обработке заготовок на таком оборудовании выбор способа закрепле-
ния имеет важное значение, поскольку крепление не должно затруднять доступ 
к обрабатываемым поверхностям и при этом оно должно обеспечивать возмож-
ность обработки всех ответственных элементов за один установ. 

Закрепление заготовки на рабочем столе фрезерного станка можно осу-
ществлять через пластину, зажатую в тисках, к которой посредством использо-
вания полимеров крепится заготовка. Модифицирование полимерных составов 
наполнителями позволяет преодолеть такие недостатки полимеров, как невысо-
кие упругие и прочностные свойства, относительно низкую стойкость к вибра-
ционным нагрузкам. В результате можно значительно повысить эксплуатаци-
онные и механические характеристики полимерных составов. 

Таким образом, работа, посвященная повышению эффективности изго-
товления корпусных деталей на станках с ЧПУ, заключающейся в увеличении 
производительности и снижении себестоимости за счет применения бездефор-
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мационного закрепления заготовок с помощью полимерных нанокомпозиций, 
является весьма актуальной. 

Степень разработанности темы исследования. Вопросами совершен-
ствования технологии механической обработки на металлорежущих станках за-
нимались Авраменко В.Е., Аврутин С.В., Базров Б.М., Грубый С.В., Диланян 
К.Р., Зимин В.В., Кондаков А.И., Корсаков В.С., Кургузов Ю.И., Пономарев В.А. 
и другие ученые. Улучшению свойств полимерных материалов и совершен-
ствованию технологи их применения посвящены труды Бауровой Н.И., 
Кононенко А.С., Котина А.В., Курчаткина В.В., Ли Р.И. и других ученых. Од-
нако в их трудах не были исследованы вопросы, связанные с применением по-
лимерных материалов для закрепления заготовок при обработке резанием. 

Целью работы является повышение эффективности фрезерования ис-
пользованием бездеформационного закрепления заготовок полимерными нано-
композициями. 

Задачи исследований: 
1. Разработать математическую модель, определяющую эквивалентные

напряжения и деформацию в клеевом слое от действия сил резания и геометри-
ческих параметров заготовки. 

2. Разработать нанокомпозиции на основе полимерных клеев, обладаю-
щие максимальными прочностными характеристиками. 

3. Исследовать адгезию полимерных нанокомпозиций с различными ма-
териалами заготовок. 

4. Исследовать влияние наномодификаторов на скорость полимеризации
составов, а также воздействие эксплуатационных факторов и термического воз-
действия на прочность полимерных клеев и нанокомпозиций на их основе. 

5. Проанализировать наноструктуру полимерных составов.
6. Разработать способ бездеформационного закрепления заготовок с ис-

пользованием полимерных нанокомпозиций. 
7. Внедрить предложенный способ на профильных промышленных пред-

приятиях и оценить его эффективность. 
Научная новизна: 
1. Разработана математическая модель, определяющая эквивалентные

напряжения и деформацию в клеевом слое от действия сил резания и геометри-
ческих размеров заготовки. 

2. Теоретически обосновано и экспериментально определено влияние
вибрационных нагрузок, температуры и времени полимеризации на адгезион-
ную прочность клея при бездеформационном закреплении заготовок.  

3. Получено теоретическое условие применимости бездеформационного
закрепления заготовки на полимерном клее, реализованное в виде расчетной 
программы. 

Практическая значимость: 
1. Разработан способ бездеформационного закрепления заготовок для ме-

ханической обработки (патент РФ на изобретение № 2796031), позволяющий 
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при фрезеровании нежестких заготовок снизить стоимость операции их закреп-
ления и время механической обработки. 

2. Определен оптимальный состав полимерной нанокомпозиции на осно-
ве цианоакрилатного клея, обладающий повышенными прочностными, техно-
логическими и эксплуатационными характеристиками. 

3. Разработаны рекомендации по практическому использованию нанона-
полненных полимерных составов и сконструирована специализированная 
оснастка для бездеформационного закрепления заготовок. 

4. Разработана методика и расчетная программа для принятия решения о
применимости способа закрепления при конкретных геометрических парамет-
рах заготовки и режимах фрезерования. 

Результаты диссертационной работы нашли практическое применение на 
предприятиях АО «МПП имени В.В. Чернышева», АО «Российские космиче-
ские системы» и АО «Протон-ПМ». 

Соответствие паспорту научной специальности. Область исследования 
соответствует пунктам паспорта специальности 2.5.5 – «Технология и оборудо-
вание механической и физико-технической обработки»: п. 3. «Исследование 
механических и физико-технических процессов в целях определения парамет-
ров оборудования, агрегатов, механизмов и других комплектующих, обеспечи-
вающих выполнение заданных технологических операций и повышение произ-
водительности, качества, экологичности и экономичности обработки», п. 4. 
«Создание, включая проектирование, расчеты и оптимизацию, параметров ра-
бочего инструмента и других компонентов оборудования, обеспечивающих 
технически и экономически эффективные процессы обработки». 

Положения, выносимые на защиту: 
1. Полученная математическая модель определяет эквивалентные напря-

жения и деформацию в клеевом слое от действия сил резания и геометрических 
параметров заготовки. 

2. Вибрационные нагрузки, температура и время полимеризации оказы-
вают наибольшее влияние на адгезионную прочность разработанного полимер-
ного состава при бездеформационном закреплении заготовки. 

3. Прочность клеевого соединения будет достаточной при выполнении
условия, учитывающего влияние технологических и геометрических парамет-
ров бездеформационного закрепления и обработки заготовки. 

Методы исследования и степень достоверности результатов. Теорети-
ческие исследования проведены с использованием основных положений техно-
логии машиностроения, теорий упругости и сопротивления материалов. Для 
решения задач компьютерного моделирования использовались среды Autodesk 
Inventor и ANSYS Workbench. Планирование эксперимента проводили с ис-
пользованием системы Statgraphics Centurion 19 фирмы Manugistics. При прове-
дении экспериментальных исследований использованы стандартные методики 
и современное высокотехнологичное аттестованное оборудование: гидравличе-
ская разрывная машина INSTRON 600DX, фрезерный станок с ЧПУ DMG DMU 
50 Ecoline, лабораторные аналитические весы ВЛ-124, профилограф-
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профилометр SJ-210, сканирующий зондовый микроскоп Solver NEXT, коорди-
натно-измерительная машина (далее – КИМ) с ЧПУ CRYSTA-APEX S574, виб-
ростенд инерционного действия на базе эксцентрикового вибратора ИВ-107. 
Достоверность результатов экспериментов, обработанных с использованием 
современных методов статистического анализа данных, подтверждается доста-
точной повторяемостью полученных значений физико-механических характе-
ристик нанокомпозиций, а также результатами практических испытаний и про-
изводственного внедрения способа бездеформационного закрепления заготовок 
полимерными нанокомпозициями. 

Апробация результатов работы. Основные положения диссертации до-
ложены и обсуждены на научных семинарах кафедры технологии обработки 
материалов МГТУ им. Н.Э. Баумана (Москва, 2020–2023); Международной 
конференции «Моделирование в инженерном деле» (Москва, 2023); 6-й Меж-
дународной конференции по Интеллектуальным вычислениям и оптимизации 
(Хуахин, Тайланд, 2023) – 6th International Conference on Intelligent Computing & 
Optimization 2023 (Hua Hin, Thailand, 2023); Международной научно-
технической конференции «Инновационные технологии, оборудование и мате-
риалы заготовительных производств в машиностроении» (Москва, 2022); Меж-
дународной научно-практической конференции «Инфокоммуникационные и 
интеллектуальные технологии на транспорте» (Липецк, 2022); XII Националь-
ной научно-технической конференции, проводимой под эгидой Союза машино-
строителей России (Москва, 2022); Конкурсе 2022 года на присуждение премии 
Мэра г. Москвы «Новатор Москвы» по направлению «Промышленность» 
(Москва, 2022); Всероссийском конкурсе научно-исследовательских работ в 
области инженерных и гуманитарных наук, посвященный 170-летию В.Г. Шу-
хова в номинации «Технология машиностроения» (Москва, 2023); Конкурсе 
2023 года на присуждение премии Мэра г. Москвы «Новатор Москвы» по 
направлению «Промышленность» (Москва, 2023). 

Публикации. По материалам диссертации опубликованы 9 научных ра-
бот, в том числе 2 публикации в изданиях, включенных в систему цитирования 
Scopus, 5 публикаций в рецензируемых научных изданиях из перечня ВАК Ми-
нобрнауки, из них один патент на изобретение. Общий объем публикаций со-
ставляет 7,33 п.л., автору принадлежит 3,31 п.л. 

Личный вклад. Все результаты диссертационной работы получены лич-
но автором и при его непосредственном участии в результате проведения экс-
периментальных и расчетных работ. Во всех необходимых случаях заимствова-
ния результатов в диссертации приведены ссылки на литературные источники. 

Структура и объем диссертации. Диссертация состоит из введения, пя-
ти глав, общих выводов и заключения, списка литературы и приложений. Об-
щий объем диссертации составляет 182 страницы машинописного текста, в том 
числе 170 страниц основного текста, 75 рисунков и 12 таблиц. Диссертация со-
держит список литературы из 219 наименований. 
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Содержание работы 

Во введении обоснована актуальность темы, указаны цель работы, науч-
ная новизна, практическая значимость работы, сведения об апробации резуль-
татов работы и публикациях. 

В Главе 1 приведен литературный обзор, посвященный анализу погреш-
ностей, возникающих при механической обработке. Здесь с учетом существу-
ющих способов установки и обработки заготовки в рабочей зоне станка и необ-
ходимости уменьшения погрешности обработки рассмотрены способы уста-
новки и закрепления заготовок при фрезерной обработке на станках с ЧПУ, со-
временные станочные приспособления, а также бездеформационные способы 
закрепления заготовок на магнитной и вакуумной плитах, их преимущества и 
недостатки. 

Оценка влияния способа закрепления на точностные параметры деталей 
показала, что закрепление на полимерный состав обеспечивает существенное 
снижение составляющих погрешности установки. При закреплении заготовки 
по измерительной базе погрешность базирования стремится к нулю. Погреш-
ность закрепления также стремится к нулю ввиду отсутствия контактных де-
формаций стыка заготовка–приспособление. Погрешность приспособления 
определяется точностью плиты, к которой приклеивается заготовка.  

Приведен анализ деформиру-
ющих зажимных сил (Рисунок 1), 
который показал, что при силе за-
жима, равной 40 кН, в закрепляе-
мой заготовке возникают двусто-
ронние деформации от каждой из 
губок тисков. Максимальное сме-
щение в плоскости, параллельной 
приложенной силе составило более 
0,016 мм на сторону. Результиру-
ющая деформация заготовки от 
действия сил зажима составила бо-
лее 0,03 мм.  

Силы зажима приводят к внутренним напряжениям и пластическим де-
формациям заготовки, поэтому для ее закрепления целесообразно применение 
полимерных клеев, разнообразие ассортимента которых позволяет подобрать 
требуемый состав для конкретных условий механической обработки и матери-
ала заготовки. Поскольку стоимость механической обработки во многом 
определяется временем работы оборудования, целесообразно применять по-
лимерные составы с высокой скоростью полимеризации, к которым относятся 
цианоакрилатные клеи, обладающие высокими значениями адгезионной проч-
ности. Анализ показал, что наиболее полной теорией, описывающей адгези-
онное взаимодействие системы «полимер – субстрат», является адсорбцион-
ная теория адгезии. 

Рисунок 1. 
Результаты анализа деформации 

заготовки от сил зажима 
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На основании проведенного литературного обзора были сформулированы 
цель и задачи исследования. 

В Главе 2 определены зависимости напряжений, возникающих в полимер-
ном составе от сил резания, для выявления применимости клеящего состава, 
используемого при бездеформационном закреплении обрабатываемых загото-
вок. Рассмотрена работоспособность по основным критериям: прочность, жест-
кость, вибростойкость, теплостойкость и стойкость к воздействию смазочно-
охлаждающих технологических сред (далее – СОТС).  

Вибростойкость и теплостойкость приспособления для бездеформацион-
ного закрепления заготовки определяются свойствами полимерного состава, 
поэтому для корректного учета влияния данных факторов при расчете прочно-
сти приспособления введены соответствующие коэффициенты 𝐾𝐾в и 𝐾𝐾т, числен-
ные значения которых экспериментально определены в настоящей работе. 
Стойкость полимерной прослойки к воздействию СОТС высока ввиду малой 
площади их контакта. Простой оборудования при механической обработке су-
щественно влияет на себестоимость конечного изделия, поэтому для учета не-
обходимого времени полимеризации состава введен коэффициент 𝐾𝐾п, также 
определяемый экспериментально для конкретного полимерного состава. 

Достаточная прочность закрепления будет обеспечена в случае, если си-
ла резания (𝐹𝐹р) будет меньше фактической силы ее закрепления (𝐹𝐹з): 

𝐾𝐾з  𝐹𝐹𝑝𝑝  <  𝐹𝐹з = σэ 𝑆𝑆р, (1) 
где 𝐾𝐾з = 3,0–3,9 – коэффициент запаса прочности при использовании бездефор-
мационного закрепления заготовки на полимерный материал; 𝐹𝐹𝑝𝑝 – сила резания 
при фрезеровании; 𝐹𝐹з – сила закрепления заготовки на полимерный клей; σэ – 
эквивалентные напряжения в полимерном слое; 𝑆𝑆p – площадь полимерного 
слоя, воспринимающая растягивающие нагрузки. 

Для оценки прочности соединения определяли эквивалентные напряже-
ния в соответствии с энергетической гипотезой прочности по формуле  

σэ = �σΣ2 + 3𝜏𝜏Σ2 ≤ [σ] = σп 𝐾𝐾т 𝐾𝐾в 𝐾𝐾п,   (2) 
где σΣ – суммарные нормальные напряжения, МПа; 𝜏𝜏Σ – суммарные касатель-
ные напряжения, МПа; σп – предел прочности используемого клея, МПа. 

Для определения нормальных напряжений, возникающих в слое полиме-
ра, сила 𝐹𝐹𝑝𝑝 раскладывается на составляющие Px, Py и Pz (Рисунок 2). Осевая со-
ставляющая Px вызывает напряжения сжатия, а силы Py и Pz, действующие в го-
ризонтальной плоскости, нагружают слой полимера изгибными и сжимающими 
напряжениями. Для удобства рассмотрения действия сил, находящихся в гори-
зонтальной плоскости, целесообразно их преобразовать в продольную (силу 
подачи) и поперечную составляющие Ph и Pv соответственно. Эти силы в поли-
мерном слое вызывают нормальные напряжения изгиба и касательные напря-
жения сдвига, а также соответствующие моменты 𝑀𝑀ℎ и 𝑀𝑀𝑣𝑣 в сечении, где про-
исходит приклеивание, которые рассчитываются согласно выражениям 

Нормальные напряжения 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑣𝑣 и 𝜎𝜎ℎ от силы 𝐹𝐹𝑝𝑝 определяются так: 
𝑀𝑀𝑣𝑣 = 𝑃𝑃𝑣𝑣 ℎ;  𝑀𝑀ℎ = 𝑃𝑃ℎ ℎ . (3)
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где 𝑊𝑊𝑣𝑣, 𝑊𝑊ℎ – моменты сопротивления сечений в плоскости приложения сил. 
Моменты сопротивления 𝑊𝑊𝑣𝑣 и 𝑊𝑊ℎ определяется согласно выражениям 

𝑊𝑊𝑣𝑣 = 𝐼𝐼𝑣𝑣
ℎ𝑚𝑚𝑚𝑚𝑚𝑚

; 𝑊𝑊ℎ = 𝐼𝐼ℎ
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

, (5) 
где 𝐼𝐼𝑣𝑣, 𝐼𝐼ℎ – моменты инерции относительно осей v, h, см4; 

 ℎmax, 𝑣𝑣max – наиболее удаленные точки от цента сечения, см. 
Момент инерции для сечения, по которому происходит приклеивание, 

определяется по формулам  
𝐼𝐼𝑣𝑣 = ∫ ℎ2Ф d𝐴𝐴 , 𝐼𝐼ℎ = ∫ 𝑣𝑣2Ф d𝐴𝐴, (6) 

где Ф – геометрическая фигура;    
 d𝐴𝐴 – площадь элементарной площадки, см2. 

Рисунок 2. 
Схема определения сил при фрезерной обработке заготовки произвольного  

сечения, закрепленной с помощью полимерной нанокомпозиции:
Px, Py и Pz – осевая, радиальная и тангенциальная составляющие силы резания; 

Pyz – результирующая сил Py, Pz; Ph и Pv, – продольная (сила подачи)  
и поперечная составляющие силы Pyz; P′ x, P′y, P′z – соответствующие реакции 

составляющих сил резания; S – подача заготовки 

Касательные напряжения, вызванные силами Pv и Ph в сечении, в кото-
ром происходит приклеивание, составят 

𝜏𝜏ℎ = 𝑃𝑃ℎ
𝑆𝑆п

; 𝜏𝜏𝑣𝑣 = 𝑃𝑃𝑣𝑣
𝑆𝑆п

 . (7) 
После подстановки выражений для нормальных и касательных напряже-

ний в формулу (2) условие применимости бездеформационного закрепления за-
готовки на полимерном клее в общем случае будет иметь следующий вид: 

𝜎𝜎𝑥𝑥 =  𝑃𝑃𝑥𝑥
𝑆𝑆п

;  𝜎𝜎𝑣𝑣 =  𝑀𝑀𝑣𝑣
𝑊𝑊𝑣𝑣

;  𝜎𝜎ℎ =  𝑀𝑀ℎ
𝑊𝑊ℎ

, (4)
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𝜎𝜎п Kт Kв Kп > ��𝑃𝑃𝑥𝑥𝑆𝑆п�
2

+ �𝑃𝑃𝑣𝑣 ℎ ℎ𝑚𝑚𝑚𝑚𝑚𝑚
� ℎ2
Ф

𝑑𝑑𝑑𝑑
�

2

+ �𝑃𝑃ℎ ℎ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
� 𝑣𝑣2
Ф 𝑑𝑑𝑑𝑑 �

2
+ 3�

�𝑃𝑃𝑣𝑣2+𝑃𝑃ℎ
2

𝑆𝑆п
�

2

𝐾𝐾з . (8) 

Была решена также задача для частного случая закрепления заготовки, 
имеющей форму прямоугольного параллелепипеда и обрабатываемой на фре-
зерном станке торцовой фрезой (Рисунок 3).  

Если пренебречь нормальными напряжениями сжатия, суммарные нор-
мальные напряжения, согласно теореме Пифагора, можно найти по формуле 

𝜎𝜎Σ = �𝜎𝜎ℎ2 + 𝜎𝜎Σ𝑣𝑣2 ,      (9) 
где 𝜎𝜎ℎ – максимальные нормальные напряжения в продольной плоскости, МПа; 
𝜎𝜎Σ𝑉𝑉 – максимальные нормальные напряжения в поперечной плоскости, МПа. 

Рисунок 3.  
Схема определения сил при фрезерной обработке заготовки прямоугольного 

сечения, закрепленной с помощью полимерной нанокомпозиции 

С учетом допущения о линейном распределении нормальных напряжений 
в клеевом слое максимальные нормальные напряжения в продольной 𝜎𝜎ℎ и по-
перечной 𝜎𝜎𝑣𝑣 плоскостях будут возникать у основания заготовки (в клеевом 
шве) от соответствующих сил 𝑃𝑃ℎ и 𝑃𝑃𝑣𝑣, находящихся на максимальном удалении 
от стола (габаритная высота h), и будут рассчитываться так: 

𝜎𝜎ℎ =  𝑀𝑀ℎ
𝑊𝑊𝑣𝑣

; 𝜎𝜎𝑣𝑣 =  𝑀𝑀𝑣𝑣
𝑊𝑊ℎ

, (10) 
где 𝑀𝑀ℎ ,𝑀𝑀𝑣𝑣 – изгибающие моменты от действия сил 𝑃𝑃ℎ и 𝑃𝑃𝑣𝑣 соответственно, Н·м; 
𝑊𝑊ℎ, 𝑊𝑊𝑣𝑣 – моменты сопротивления в продольном и поперечном направлениях, см3. 

𝑀𝑀ℎ = 𝑃𝑃ℎ ℎ;   𝑀𝑀𝑣𝑣 = 𝑃𝑃𝑣𝑣 ℎ,         (11) 
где 𝑃𝑃ℎ ,𝑃𝑃𝑣𝑣 – продольная и поперечная составляющие силы резания; h – габарит-
ная высота заготовки. 

Моменты сопротивления определяются по формулам 
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𝑊𝑊ℎ = 𝑙𝑙2𝑏𝑏
6

;  𝑊𝑊𝑣𝑣 = 𝑏𝑏2𝑙𝑙
6

 . (12) 
Преобразовав совместно выражения (9)–(12), получим 

𝜎𝜎Σ = ��6𝑃𝑃ℎ ℎ
𝑙𝑙2𝑏𝑏

�
2

+ �6𝑃𝑃𝑣𝑣 ℎ
𝑏𝑏2𝑙𝑙

�
2
 . (13) 

Суммарные касательные напряжения находятся по теореме Пифагора: 
𝜏𝜏Σ = �𝜏𝜏ℎ2 + 𝜏𝜏𝑣𝑣2 .      (14) 

Касательные напряжения сдвига в продольном и поперечном направле-
ниях определяются по формулам 

𝜏𝜏ℎ = 𝑃𝑃ℎ
𝑙𝑙𝑙𝑙

 , 𝜏𝜏𝑣𝑣 = 𝑃𝑃𝑣𝑣
𝑙𝑙𝑙𝑙

 . (15) 
Допустив равномерность распределения касательных напряжений по ши-

рине сечения, получим 

𝜏𝜏Σ = ��𝑃𝑃ℎ
𝑙𝑙𝑙𝑙
�
2

+ �𝑃𝑃𝑣𝑣
𝑙𝑙𝑙𝑙
�
2
  .  (16) 

С учетом допущений, рассмотрев нормальные и касательные напряжения, 
было определено условие применимости бездеформационного закрепления за-
готовки длиной 𝑙𝑙, шириной 𝑏𝑏 и высотой ℎ при ее обработке торцовой фрезой: 

𝜎𝜎п Kт Kв Kп > ��6𝑃𝑃ℎ ℎ
𝑙𝑙2𝑏𝑏

�
2

+ �6𝑃𝑃𝑣𝑣 ℎ
𝑏𝑏2𝑙𝑙

�
2

+ 3 ��𝑃𝑃ℎ𝑙𝑙𝑙𝑙�
2

+ �𝑃𝑃𝑣𝑣𝑙𝑙𝑙𝑙�
2
�  𝐾𝐾з  . (17) 

Моделирование напряженного состояния заготовки под действием стати-
ческой силы резания методом конечных элементов в программном обеспечении 
на базе CAD/CAE-системы Autodesk Inventor показало, что значения макси-
мальных напряжений при моделировании получились меньше, чем при расчете 
по полученному выражению в среднем на 4%. 

Для оценки применимости и корректировки технологии изготовления дета-
лей при бездеформационном закреплении заготовок на полимерный состав разра-
ботана компьютерная программа, позволяющая получать значения параметров 
режимов резания в зависимости от характеристик инструмента, заготовки и клея. 

Была исследована жесткость полимерного состава и получена формула 
для вычисления линейной деформации в наиболее нагруженной и условно ме-
нее жесткой поперечной плоскости: 

𝛿𝛿ℎ𝑣𝑣 = 6𝑃𝑃𝑣𝑣 ℎ 𝛿𝛿
𝐸𝐸 𝑏𝑏2𝑙𝑙−6𝑃𝑃𝑣𝑣 ℎ

 .  (18) 
Анализ деформации полимерного слоя в заготовке с размерами сторон 

0,1×0,1×0,1 м под действием составляющей силы резания 𝑃𝑃𝑣𝑣, изменяющейся в 
диапазоне от 500 до 20 000 Н, показал, что деформация является пренебрежимо 
малой и не превышает 0,34 мкм. 

В Главе 3 изложена общая программа и частные методики исследования 
оптимальной концентрации нанонаполнителей, влияния размера наночастиц на 
прочность полимерных композиций и скорость их полимеризации, температур-
ной стойкости полимерных составов и их адгезии с различными материалами, 
стойкости полимерных композиций к воздействию СОТС и вибрационным 
нагрузкам, а также наноструктуры поверхностей полимеров. 
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Анализ рынка цианоакрилатных составов показал, что отечественные 
предприятия машиностроительной отрасли широко используют клеи производ-
ства АО «НИИ ПОЛИМЕРОВ» (ТК-200, ТК-300, ТК-301) и зарубежные клеи 
фирмы Loctite (Loctite 496, Loctite 415, Loctite 420). Наилучшие характеристики 
для закрепления заготовок имеют клеи ТК-200 и Loctite 496, поэтому их ис-
пользовали для исследований. По итогам анализа свойств наполнителей для ис-
следований применяли наноразмерные диоксид кремния (далее – SiO2), оксид 
алюминия (далее – Al2O3) и углеродные нанотрубки (далее – УНТ). 

По формуле Коунто определили, что массовая концентрация SiO2 в ис-
следуемых полимерных составах составляет от 1,5 до 2,5%, Al2O3 – от 0,4 до 
0,8% и УНТ – от 0,3 до 0,6%; при проведении экспериментов исследовались 
нанокомпозиции с данным диапазоном концентраций наночастиц: 

Eнк
Eп

= �1 − φн
1 2⁄ � + Eн

�1−φн1 2⁄ �

φн1 2⁄  Eп+Eн
 , (19) 

где 𝐸𝐸нк, 𝐸𝐸п и 𝐸𝐸н – модули упругости композиции, ненаполненного полимера и 
наполнителя соответственно, МПа; φн – объемная доля наполнителя. 

Адгезионную прочность полимерных составов и нанокомпозиций на их ос-
нове оценивали по значениям нормальных и касательных напряжений при отрыве 
и сдвиге склеенных образцов на гидравлической разрывной машине INSTRON 
600 DX. Перед началом испытаний нанокомпозиции обрабатывались ультразву-
ком, поверхности образцов очищали и обезжиривали ацетоном. С помощью про-
граммного пакета Statgraphics Centurion 19 проводился факторный анализ экспе-
риментальных данных и получен оптимальный состав нанокомпозиций. 

Влияние материала заготовок на адгезионную прочность исследуемых поли-
меров оценивали для образцов из БрОЦС5-5-5, Л63, В95Т1, АМГ6, Д16Т, ПН Ф4, 
ПОМ С и ПА 6, а также осуществляли оценку влияния размера частиц нанопо-
рошка SiO2 на адгезионные свойства Loctite 496 и ТК-200. 

Для определения влияния температурного воздействия на прочность кле-
евого соединения образцы подвергались термическому воздействию в течение 
20 мин при температурах от 40 до 160°С. Оценка адгезионной прочности про-
водилась по нормальным и касательным напряжениям. 

Стойкость полимерных составов к воздействию СОТС оценивалась по из-
менению массы полимерных пленок размером 0,1×15×15 мм, изготовленных в 
соответствии с требованиями ГОСТ 269-66. После кондиционирования, согласно 
ГОСТ 12423-66, их взвешивали на весах ВЛ-124 с точностью 10-4 г. После вы-
держки пленок в воде, масляной СОЖ и СОЖ в концентрации 5% в течение 1–
672 ч их очищали, просушивали и кондиционировали. Относительное изменение 
массы образцов определяли по соотношению их масс до и после выдержки. 

Вибрационную стойкость исследуемых составов оценивали по их адгези-
онной прочности после воздействия вибраций в течение 10, 20 и 30 ч на стенде 
с эксцентриковым вибратором ИВ-107.  

Влияние наноразмерных частиц на скорость набора прочности нанонапол-
ненных полимеров определяли путем проведения сравнительных испытаний со-
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ставов Loctite 496, ТК-200 и нанокомпозиций на их основе. Адгезионную проч-
ность исследовали в диапазоне 5 с – 24 ч после склеивания образцов. 

Наноструктуру образцов оценивали с помощью сканирующего зондового 
микроскопа Solver NEXT. Образцами служили квадратные пленки из полимеров 
и нанокомпозиций размером 5,0×5,0 мм и толщиной 0,05 мм. 

В Главе 4 описаны результаты исследований и проведен их анализ. Модифи-
кация цианоакрилатных полимеров наночастицами приводит к увеличению проч-
ности нанокомпозиции. Для определения оптимальной концентрации нанонапол-
нителей использовался двухфакторный центральный композиционный анализ. Ре-
зультаты исследований (Рисунок 4) показали, что максимальное значение адгези-
онной прочности полимерной композиции на основе ТК-200 достигается при раз-
мере частиц наполнителя 380 нм и массовой концентрации 2%. Аналогичные ре-
зультаты получены при исследовании Loctite 496. В этой связи для дальнейших ис-
следований был выбран наполнитель диоксид кремния Аэросил HL 380. 

Рисунок 4. 
Контурный график совместного влияния размера частиц (Factor_В) и массовой 
концентрации (Factor_А) на адгезионную прочность (Var_1) полимерной ком-

позиции на основе ТК-200 

Исследования температурной стойкости полимеров показали, что снижение 
прочности состава Loctite 496 и нанокомпозиции на его основе происходит при 
нагреве до температур 80 и 100 °С соответственно, а ТК-200 и нанокомпозиции на 
его основе – при нагреве соответственно до 100 и 120 °С. Повышение стойкости 
нанокомпозиций к воздействию высоких температур составило 15–20 °С, что, 
скорее всего, связано с более высокой теплостойкостью нанонаполнителя. Были 
определены значения коэффициента 𝐾𝐾т для выражения (17). 

Результаты исследования адгезии исследуемых составов Loctite 496 
и ТК-200 с различными материалами заготовок представлены на Рисунке 5. Ад-
гезионная прочность на отрыв разработанной нанокомпозиции на основе ТК-200 
с образцами из стали 45 составила 46,3 МПа, из алюминиевых сплавов В95Т1, 
АМГ6 и Д16Т – 40,9 – 45,0 МПа, из бронзы (БрОЦС5-5-5) и латуни (Л63) соот-
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ветственно 53,5 и 47,1 МПа, из фторопласта (ПН Ф4), полиацетали (ПОМ С) и 
полиамида (ПА6) – 11,5–14,4 МПа. Прочность по касательным напряжениям 
этой же композиции к образцам из стали 45 составила 18,8 МПа, из алюминие-
вых сплавов – 18,5–20,0 МПа, из бронзы и латуни – соответственно 25,0 
и 20,3 МПа, а из фторопласта, полиацетали и полиамида – 4,9–6,6 МПа. Влияние 
материала субстрата на адгезионную прочность нанокомпозиции на основе Loc-
tite 496 носит аналогичный характер. 

Рисунок 5.  
Адгезионная прочность Loctite 496, ТК-200 и нанокомпозиций на их основе 

с различными материалами 

Анализ результатов исследования стойкости полимеров к СОТС показал, 
что цианоакрилатные клеи имеют высокую стойкость во всех исследуемых 
средах. Добавление наночастиц SiO2 позволяет уменьшить влияние агрессив-
ных сред на составы ТК-200 и Loctite 496 до 63%.  

Вибрационное воздействие на полимер показало, что через 30 ч значение ад-
гезионной прочности состава ТК-200 снизилось на 11%, Loctite 496 – на 17%, а 
нанокомпозиций на основе ТК-200 и Loctite 496 – соответственно на 7 и 14%. По-
лученные результаты показали, что у нанокомпозиций стойкость к вибрационным 
нагрузкам до 37% больше, чем у ненаполненных составов. Стойкость к вибраци-
онным нагрузкам у нанокомпозиции с отечественным составом выше, чем с зару-
бежным. Были определены значения коэффициента 𝐾𝐾в для выражения (17). 

Результаты оценки адгезии по нормальным напряжениям через 10–300 с по-
казали, что скорость набора прочности полимерных составов Loctite 496 и ТК-200 
увеличивается при добавлении наноразмерных частиц диоксида кремния соответ-
ственно в 1,5 и 1,45 раза. В результате чего наномодификация полимера позволяет 
за существенно более короткий промежуток времени достичь сопоставимых зна-
чений прочности. Так, время набора прочности нанокомпозиции на основе ТК-200 
до 26 МПа составляет 90 с, что в 2 раза меньше, чем для ненаполненного состава, 
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который приобретает ту же прочность лишь через 180 с. Также по результатам 
эксперимента были определены значения коэффициента 𝐾𝐾п для выражения (17). 

Результаты микроскопии полимера ТК-200 (Рисунок 6, а) показали, что его 
структура неравномерная. После смешивания состава с SiO2 и обработки в уль-
тразвуковом поле наблюдается повышение равномерности распределения струк-
турных элементов, увеличение их количества более чем на 50% (Рисунок 6, б), 
что подтверждает полученные результаты по адгезионной прочности, увеличив-
шейся почти в два раза вследствие увеличения числа адгезионных связей. Ана-
логичные результаты были получены и для состава Loctite 496. Состав ТК-200 
имеет большее количество структурных элементов, чем Loctite 496. 

  а         б 
Рисунок 6. 

Сканы поверхностей полимеров и нанонаполнителей: 
а – ТК-200; б – ТК-200 и SiO2 

Таким образом, анализ структуры полимерных составов показал, что при 
смешивании их с наночастицами увеличивается количество структурных эле-
ментов и равномерность их распределения, что объясняет повышение адгези-
онной прочности нанокомпозиций. 

В Главе 5 приведены разработанные рекомендации по выбору способа без-
деформационного закрепления заготовок из немагнитных материалов на поли-
мерную нанокомпозицию в условиях единичного производства (Рисунок 7).  

Рисунок 7. 
Блок-схема выбора способа закрепления заготовок при фрезеровании 
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На основе результатов теоретических изысканий и экспериментальных ис-
следований разработан способ бездеформационного закрепления заготовок с 
использованием нанонаполненных полимерных составов, который включает 
следующие операции: закрепление плиты на рабочем столе станка; очистку и 
обезжиривание поверхности плиты; нанесение клея; установку заготовки; ме-
ханическую обработку; снятие (нагрев до 160 °С) и переустановку заготовки; 
окончательную обработку; снятие (нагрев до 160 °С) и очистку готовой детали. 

С применением данного способа была изготовлена деталь «Корпус» (Ри-
сунок 8). Согласно результатам измерений, на КИМ с ЧПУ CRYSTA-Apex S544 
фирмы Mitutoyo получили полное соответствие готового изделия требованиям 
чертежа. 

а    б     в 

Рисунок 8. 
Этапы технологического процесса изготовления детали: 

а – закрепление жертвенной плиты в рабочей зоне станка; б – закрепление заго-
товки на полимерную нанокомпозицию; в – механическая обработка заготовки 

Применение нового способа позволило сократить время фрезерования по 
сравнению со способом закрепления на вакуумной плите до трех раз и в зажим-
ном приспособлении – до 1,2 раза путем увеличения подачи и глубины резания. 

Предложенный способ обеспечивает существенное снижение погрешно-
сти установки заготовок, включающее уменьшение погрешностей базирования 
(при приклеивании заготовки по измерительной базе), закрепления (ввиду от-
сутствия силы закрепления) и приспособления (при использовании жесткой 
жертвенной плиты), по сравнению с использованием вакуумных и зажимных 
приспособлений. 

Разработанный способ прошел производственные испытания и внедрен в 
АО «МПП имени В.В. Чернышева», АО «Российские космические системы» и 
АО «Протон-ПМ». Анализ показал, что при программе изготовления 120 дета-
лей «Корпус» в год стоимость закрепления заготовок на клей меньше до 5 раз, а 
экономическая эффективность капитальных вложений больше до 18 раз, чем 
при закреплении на вакуумном и универсальном переналаживаемом приспо-
соблениях, что свидетельствует об эффективности применения предложенной 
технологии. 
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ОБЩИЕ ВЫВОДЫ И ЗАКЛЮЧЕНИЕ 

1. Установлено, что наиболее распространенные станочные приспособле-
ния для бездеформационного закрепления заготовок имеют ряд недостатков: 
магнитные плиты недопустимо использовать при работе с немагнитными мате-
риалами, а вакуумные столы сложны в эксплуатации в единичном и мелкосе-
рийном производстве. Закрепление заготовок на полимерные клеи является по-
тенциально востребованным способом. Добавление в клеи наноразмерных ча-
стиц способствует улучшению их механических и эксплуатационных свойств. 

2. Разработана математическая модель, определяющая эквивалентные
напряжения и деформацию в клеевом слое от сил резания и геометрических па-
раметров заготовки, позволяющая оценить применимость технологии. 

3. Разработаны новые нанокомпозиции на основе цианоакрилатных клеев,
наномодифицированные диоксидом кремния с оптимальной массовой концен-
трацией 2% и удельной площадью поверхности частиц, равной 380 м2/г, позво-
лившие повысить прочность нанокомпозиций на основе отечественного состава 
ТК-200 с 25,1 до 46,3 МПа и зарубежного Loctite 496 – с 12,2 до 21,4 МПа. 

4. Экспериментально подтверждено, что адгезионная прочность исследуе-
мых нанокомпозиций зависит от материала субстрата. На образцах из латуни и 
алюминиевых сплавов получены сопоставимые значения прочности со сталь-
ными образцами, из бронзы – на 20% выше, а из фторопласта, полиацетали и 
полиамида – на 80–85% ниже, чем на стальных образцах.  

5. Установлено, что при наномодифицировании составов на основе Loctite
496 и ТК-200 время набора их прочности сокращается в 2 раза, стойкость к вибра-
ционным нагрузкам и смазочно-охлаждающим технологическим средам повыша-
ется соответственно до 37 и 63%, а теплостойкость – до 20%. Наилучшие показа-
тели были получены для нанокомпозиции на основе отечественного состава. 

6. Анализ структуры исследуемых материалов показал, что смешивание ци-
аноакрилатного клея с наночастицами увеличивает количество структурных 
элементов более чем на 50% и равномерность их распределения по сравнению с 
ненаполненным составом. Это приводит к повышению количества адгезионных 
связей, что положительно сказывается на прочности полученных нанокомпозиций. 

7. Разработанный способ бездеформационного закрепления с использова-
нием нанонаполненных полимерных составов обеспечивает снижение погрешно-
сти при установке заготовок. Разработанные методика и расчетная программа 
позволяют принимать решение о применимости способа закрепления при кон-
кретных геометрических параметрах заготовки и режимах фрезерования. 

8. Разработанный способ защищен патентом РФ на изобретение, успешно
прошел производственные испытания и внедрен в АО «МПП имени В.В. Черны-
шева», АО «Российские космические системы» и АО «Протон-ПМ». Его примене-
ние позволяет в условиях единичного производства повысить до 18 раз экономиче-
скую эффективность капитальных вложений, снизить до 5 раз стоимость операции 
закрепления заготовок и до 3 раз время их фрезерования по сравнению с использова-
нием вакуумных и универсальных переналаживаемых зажимных приспособлений. 
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