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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. Аневризма брюшного отдела 

аорты (АБА) – патологическое увеличение диаметра просвета брюшной аорты 

от 30 мм и более, характеризующееся различной этиологией, скрытым 

течением и неблагоприятным прогнозом (Национальные клинические 

рекомендации «Аневризма брюшной аорты», 2022). Распространенность АБА 

в мире достигает 0,92 % или 35,12 миллионов случаев (Song P. и др., 2023), в 

РФ – до 0,04 % или 5,8 тыс. случаев. Частота разрывов аневризм брюшной 

аорты составляет от 5,6 до 7,5 случаев на 100 тыс. смертей населения 

(Reimerink J. и др., 2013).  

Своевременная диагностика АБА является ключевым фактором, 

позволяющим снизить риск осложнений и напрямую влияющим на 

эффективность лечения (Anagnostakos J., 2021). Несмотря на отработанную 

методологию целевого скрининга с применением ультразвуковых 

исследований, АБА нередко выявляют в рамках оппортунистического 

скрининга при рентгенологическом описании компьютерной томографии 

органов брюшной полости (КТ ОБП). Целесообразность оппортунистического 

скрининга АБА на КТ ОБП подтверждается результатами ретроспективного 

аудита, согласно которым до 4 % ежегодно проводимых КТ ОБП содержат 

незарегистрированные случаи АБА (Claridge R. и др., 2017). Причины 

пропусков могут быть различными, однако в целом, они обусловлены 

особенностями проведения оппортунистического скрининга, когда 

дополнительно к задаче анализа целевой патологии необходимо оценить 

размеры просвета брюшного отдела аорты на всем ее протяжении в отсутствии 

контрастного усиления. Данная задача ассоциирована с высокими 

трудозатратами для врача-рентгенолога, описывающего исследование 

(Aiello M. и др., 2019), что в свою очередь актуализирует применение 

алгоритмов компьютерного зрения для автоматизации первичной обработки 

исследований. Анализ публикационной активности демонстрирует 

сдержанное развитие данной области в мире (Kodenko M. R. и др., 2022). К 

основным сдерживающим факторам можно отнести малое число наборов 

данных (НД), репрезентативность и объем которых являются одним из 

ключевых условий успешного обучения и объективного тестирования 

алгоритмов компьютерного зрения (Borovicka T. и др., 2012).  

Формирование репрезентативного НД, содержащего 

верифицированную разметку области интереса, осуществляется 

медицинскими экспертами вручную. Помимо высоких трудозатрат, слабая 

различимость границы сосуда на фоне окружающих тканей, характерная для 

оппортунистического КТ-скрининга, делает ручной метод весьма 

субъективным (Ghouri M. A. и др., 2019). 

Результаты пилотного исследования с участием специалистов Центра 

диагностики и телемедицины, показали, что в одинаковых условиях два 

эксперта-рентгенолога по-разному размечают область сосуда, вплоть до 

различной классификации его состояния (значение коэффициента Дайса- 
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Серенсена составило 0,76 для случаев минимального совпадения разметки). В 

тоже время, проблема визуализации границ сосуда на фоне окружающих 

тканей успешно решена за счет использования КТ-ангиографии (КТА) с 

применением внутрисосудистых рентегноконтрастных веществ (РКВ): в этом 

случае область интереса имеет четкую границу, ее определение поддается 

автоматизации. В рамках данной работы предложен метод подавления 

контрастного усиления в размеченных КТА-данных с целью получения 

бесконтрастных КТ-изображений брюшной аорты, содержащих разметку, 

выполненную в условиях объективной различимости границ сосуда. 

Целью исследования является разработка метода и средств синтеза 

размеченных бесконтрастных КТ-изображений брюшного отдела аорты за 

счет подавления контрастного усиления в данных КТ-ангиографии. 

Для достижения поставленной цели в работе были сформулированы и 

решены следующие задачи: 

1. Исследование возможности выделения РКВ-индуцированного 

компонента сигнала КТ-плотности. 

2. Разработка математической модели пространственного 

распределения РКВ в области его накопления. 

3. Разработка метода синтеза бесконтрастных КТ-изображений за 

счет подавления РКВ-индуцированного компонента сигнала КТ-плотности. 

4. Разработка тест-объекта и экспериментального стенда, 

позволяющих получать КТ-ангиографические изображения, аналогичные 

изображениям брюшного отдела аорты реальных пациентов по значению 

КТ-плотности. 

5. Апробация разработанных метода и средств синтеза 

бесконтрастных КТ-изображений, содержащих разметку брюшного отдела 

аорты. 

Научная новизна работы: 

1. Показано, что распределение рентгеноконтрастного вещества в 

просвете и стенке сосуда на аксиальных КТ-изображениях во фронтальном и 

сагиттальном направлении может быть аппроксимировано посредством 

суммы двух симметричных сигмоидов специального вида. 

2. Показано, что сочетание силиконового матрикса на платиновой 

основе и полиуретановых нитей способно имитировать КТ-плотность стенки 

артериального сосуда со средним значением и среднеквадратическим 

отклонением 161 HU и 17 HU соответственно.  

3. Впервые разработан метод подавления контрастного усиления в 

просвете и стенке брюшного отдела аорты, основанный на скорректированном 

вычитании контраст-индуцированного компонента из сигнала КТ-плотности. 

Теоретическая и практическая значимость работы: 

1. Создан экспериментальный стенд, позволяющий генерировать 

пульсовую волну давления в диапазоне значений давления от 60 мм рт. ст. 

до 130 мм рт. ст., объемной скорости от 3 л/мин до 6 л/мин, при частотах 

0,5 Гц, 1 Гц и 1,5 Гц. 
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2. Апробирована технология изготовления тест-объекта, 

имитирующего не только биомеханические (разрушающее напряжение 

2,15 ± 0,15 МПа, максимальное относительное удлинение 3,18 ± 0,05 мм/мм), 

но и рентгеновские характеристики брюшного отдела аорты в контрастно-

усиленной фазе сканирования. 

3. Разработана методика подготовки размеченных наборов данных 

бесконтрастных КТ-изображений брюшного отдела аорты, позволяющая 

сократить время их подготовки в 4 раза. 

4. Показано, что расчетные параметры модели статистически 

значимо различаются при аппроксимации данных в области визуально 

однородного и неоднородного, вызванного дилатацией, тромбозом и 

отхождением магистральных артерий, распределения рентегноконтрастного 

вещества, что в дальнейшем может быть использовано для повышения 

информативности рутинного КТА-исследования. 

5. Разработано программное обеспечение для извлечения и анализа 

контраст-индуцированного компонента сигнала КТ-плотности, а также для 

подавления контрастирования аорты на КТ-ангиографических изображениях. 

Основные положения, выносимые на защиту: 

1. Математическая модель двумерного распределения 

рентгеноконтрастного вещества в брюшном отделе аорты в виде набора сумм 

двух сигмоидов позволяет аппроксимировать как области однородного, так и 

неоднородного его распределения, вызванного дилатацией, тромбозом либо 

отхождением магистральных артерий. Значения среднеквадратической 

ошибки аппроксимации для указанных областей отдельно взятого КТ-

исследования статистически значимо не различаются (p > 0,1) и унимодально 

распределены (p > 0,7).  

2. Сочетание силиконового матрикса на платиновой основе и 

армирующих термопластичных полиуретановых нитей позволяет 

имитировать КТ-плотность контрастно-усиленного артериального сосуда со 

средним значением и среднеквадратическим отклонением 161 HU и 17 HU 

соответственно при стандартном протоколе КТ-сканирования органов 

брюшной полости. 

3. При аппроксимации контраст-индуцированного компонента сигнала 

КТ-плотности брюшного отдела аорты на аксиальных проекциях с помощью 

набора сумм двух сигмоидов статистически значимые различия между 

исходными данными и результатами аппроксимации отсутствуют (p > 0,1), 

медианное значение среднеквадратичной ошибки аппроксимации находится в 

диапазоне от 7 до 15 HU и статистически значимо (p < 0,001) меньше, чем 

среднеквадратическое отклонение аппроксимируемого сигнала. 

4. Метод скорректированного вычитания контраст-индуцированного 

компонента из данных, полученных при КТ-сканировании брюшного отдела 

аорты с контрастным усилением, позволяет получить значения КТ-плотности, 

статистически значимо не отличающиеся (p > 0,1) от значений, полученных 

при КТ-сканировании без контрастного усиления. 
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Методы исследования. В работе использованы методы математической 

статистики, методы обработки и анализа данных, методы машинного 

обучения и распознавания образов, элементы теории биотехнических систем. 

Достоверность результатов основывается на использовании в работе 

основных положений теории биотехнических систем, методов 

математической статистики и других известных методов исследования. 

Полученные результаты не противоречат общепризнанным принципам и 

результатам исследований, опубликованным в работах отечественных и 

зарубежных авторов. 

Внедрение и использование. Результаты диссертационной работы 

использованы при выполнении с участием автора прикладных научных 

исследований в рамках Госзадания 2023 г.: № 123031500005-2 и 

№ 123031500002-1 ГБУЗ НПКЦ ДиТ ДЗМ; № FSFN-2023-0008 МГТУ им. Н.Э. 

Баумана; внедрены в учебный процесс кафедры «Биомедицинские 

технические системы» МГТУ им. Н.Э. Баумана. 

Апробация материалов диссертации. Основные положения и 

результаты работы обсуждались на конференциях: «Математика. Компьютер. 

Образование» (Пущино, 2020; онлайн 2023); VI Всероссийский научно-

образовательный конгресс с международным участием «Онкорадиология, 

лучевая диагностика и терапия» (Москва, 2023); II Всероссийский конгресс 

«Современные тренды в хирургии» (Москва, 2023) III Открытая конференция 

молодых ученых НПКЦ ДиТ ДЗМ (Москва, 2023); III Российский 

диагностический саммит (Москва, 2023); II Всероссийский саммит 

«Искусственный интеллект в офтальмологии» (онлайн 2023). 

Публикации. Основные результаты диссертационного исследования 

представлены в 10 научных работах, включая 2 статьи в рецензируемых 

журналах и изданиях из перечня ВАК РФ, 1 статью, индексируемую в Wos и 

Scopus и 2 свидетельства о государственной регистрации программ для ЭВМ. 

Общий объем 4,9 п.л. 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении показана актуальность диссертационного исследования, 

сформулирована цель и задачи работы, научная новизна и защищаемые 

положения, представлены общие сведения о работе. 

В первой главе проведено исследование особенностей распределения 

РКВ в просвете и стенке брюшной аорты. Введены базовые понятия, изложены 

физические принципы формирования КТ-изображений, систематизированы 

данные о современных типах внутрисосудистых РКВ. Обозначена пациент-

специфичность распределения РКВ и определен круг основных процессов и 

эффектов, влияющих на это распределение: пульсовая волна давления, 

профиль потока и отток РКВ в стенку сосуда. Исследована форма сигнала КТ-

плотности в области интереса на аксиальных томографических проекциях: 

сигнал во фронтальном и в сагиттальном направлении имеет «п»-образную 

форму с монотонным фронтом и флуктуациями в области плато. Отмечено, 

что область плато соответствует просвету сосуда, область фронта – 
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париетальным и внутристеночным гемодинамическим процессам, детальный 

анализ которых затруднен из-за влияния артефакта частичного объема. 

Данный артефакт представляет собой усреднение значений КТ-плотности на 

границе контрастных объектов. Теоретически обоснована возможность 

извлечения из сигнала КТ-плотности РКВ-индуцированного компонента за 

счет соблюдения закона аддитивного поглощения рентгеновского излучения 

смесью крови и РКВ в диапазоне диагностических интенсивностей 

рентгеновского излучения от 80 кВ до 150 кВ, в т.ч. для низковольтных (60 кВ) 

КТА-протоколов. 

Вторая глава посвящена разработке математической модели 

одномерного и двумерного распределения РКВ в области его накопления, а 

также разработке метода синтеза бесконтрастных КТ-изображений аорты за 

счет подавления РКВ-индуцированного компонента в сигнале КТ-плотности. 

Для моделирования одномерного распределения РКВ, с учетом 

описания формы сигнала и по результатам анализа существующих 

математических функций предложен функционал, аналитически заданный 

суммой двух симметричных взаимно смещенных сигмоидов: 

 

𝐹 = 𝐹0 − 𝑎 ∙ (
1

1+exp(𝑏∙𝑥−𝑐)
−

1

1+exp(𝑑∙𝑥−𝑒)
),                               (1) 

 

где 𝐹0 − ордината минимума; a – ордината плато; b и c – коэффициенты, 

определяющие положение точки перегиба и крутизну нарастающего фронта; 

d и e – коэффициенты, определяющие положение точки перегиба и наклон 

спадающего фронта. 

Для описания просвета сосуда и для интегрального описания процессов 

в т.н. «переходной зоне» по коэффициентам модели рассчитываются пять 

параметров: 𝛥𝑥𝑟𝑖𝑠𝑖𝑛𝑔 , 𝛥𝑥𝑓𝑎𝑙𝑙𝑖𝑛𝑔 , 𝑡𝑔(𝛼), 𝑡𝑔(𝛽), 𝑤𝑝𝑙  (Рисунок 1). 

 

 
Рисунок 1. Вид аппроксимирующей кривой функционала 𝐹(𝑥) и расчетные 

параметры модели 
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Аппроксимация проводится методом нелинейных наименьших 

квадратов с оптимизацией Левенберга-Марквардта. Этот метод сочетает в себе 

аспекты методов градиентного спуска и Гаусса-Ньютона, что делает его 

универсальным для различных сценариев: он использует градиентный спуск, 

когда значения параметров существенно отличаются от оптимальных, и 

переходит к методу Гаусса-Ньютона, когда параметры близки к оптимальным. 

Данный метод хорошо зарекомендовал себя для задач аппроксимации гибких 

кривых с неоптимальными начальными условиями. Начальные условия 

определяются по исходным данным: 𝐹0  – минимальное значение сигнала; а – 

абсолютное значение разницы между максимальным и минимальным 

значением сигнала; 𝑐
𝑏⁄  – абсцисса начала сигнала; 𝑒

𝑑⁄  – абсцисса конца 

сигнала; b=d=1 (симметричные сигмоиды).  

Для формирования модели двумерного распределения РКВ проводится 

построение одномерных моделей на аксиальных томографических проекциях 

во фронтальном и сагиттальном направлениях. Итоговое значение двумерного 

распределения РКВ в каждом пикселе определяется по критерию близости к 

реальным данным: 

 

𝐹РКВ(𝑝𝑖𝑥) = {
𝐹𝑖(𝑝𝑖𝑥), 𝑖𝑓 |𝐹𝑖(𝑝𝑖𝑥) − 𝐹(𝑝𝑖𝑥)| ≤ |𝐹𝑗(𝑝𝑖𝑥) − 𝐹(𝑝𝑖𝑥)|,

𝐹𝑗(𝑝𝑖𝑥), 𝑖𝑓 |𝐹𝑖(𝑝𝑖𝑥) − 𝐹(𝑝𝑖𝑥)| > |𝐹𝑗(𝑝𝑖𝑥) − 𝐹(𝑝𝑖𝑥)|.
       (2) 

 

где 𝐹𝑖(𝑝𝑖𝑥) и 𝐹𝑗(𝑝𝑖𝑥) – результаты фронтальной и сагиттальной 

аппроксимации соответственно, 𝐹(𝑝𝑖𝑥) – исходные данные. 

Для подавления контрастного усиления аппроксимированный сигнал 

компенсируется на величину базового уровня 𝐹0 и затем вычитается из данных 

в области интереса (Рисунок 2). 

 

 
Рисунок 2. Подавление РКВ-индуцированного компонента для одномерного 

сигнала КТ-плотности 

 

Разработанная модель распределения РКВ была исследована на наборе 

данных открытого доступа, содержащих случаи нормального и измененного 
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просвета аорты и включающих 594 среза 4-х КТА-исследований: одно с 

аневризмой, еще одно со случаем тромбоза и два с неизмененным просветом 

аорты, содержащим участки отхождения магистральных артерий. Экспертным 

путем на изображениях были выделены участки нормального и измененного 

просвета сосуда в пределах каждого КТ-исследования. Были рассчитаны 

параметры модели и значение ошибки аппроксимации для данных выборок. 

Значения расчетных параметров модели статистически значимо (p < 0,05; 

U-тест Манна-Уитни) различаются по результатам сопоставления 

нормального и измененного просвета аорты, что свидетельствует о различном 

распределении РКВ в данных областях. При этом, значения ошибок 

аппроксимации статистически значимо не различаются при сопоставлении 

однородного распределения РКВ в области неизмененного просвета аорты с 

областями неоднородного распределения РКВ, вызванного аневризмой, 

тромбом и отхождением магистральных артерий (p = 0,32; 0,33 и 0,14 

соответственно). Сопоставление данных проводилось с использованием 

t-теста, т.к. все сопоставляемые выборки имели нормальное распределение 

(p > 0,05; тест Шапиро-Уилка). Распределение значений 

среднеквадратической ошибки (RMSE) аппроксимации в рамках одного КТ-

исследования демонстрирует статистически значимую унимодальность по 

результатам dip-теста Хартигана для всех четырех КТ-исследований 

(Рисунок 3); 95 % доверительные интервалы для значения p составили: (0,90; 

0,98); (0,99; 0,99); (0,78; 0,90) и (0,99; 0,99). 

 

 
а                                       б                                       в 

Рисунок 3. Сопоставление RMSE (в единицах HU) между областями 

неоднородного и однородного распределения РКВ для первого, второго и 

третьего КТ-исследований: пациент с АБА (а), пациент с тромбозом аорты (б), 

пациент с нормальной аортой и наличием магистральных артерий (в) 

 

Третья глава посвящена разработке лабораторного стенда, для 

получения изображений тест-объекта, аналогичных КТ-изображениям 

артериального сосуда. Данный лабораторный стенд необходим для получения 

изображений в контрастно-усиленной и бесконтрастной фазах с одинаковыми 
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параметрами сканирования, что затруднительно получить при работе с 

пациентами ввиду клинически-обоснованной практики снижения дозы 

облучения при применении РКВ (Kulkarni N. M. и др., 2021). 

Разработанный стенд, представленный на Рисунке 4, включает в себя 

тест-объект и генератор пульсаций оригинальной конструкции, который 

способен генерировать пульсовую волну давления заданной формы напрямую 

в исследуемом тест-объекте без необходимости макетирования сосудистой 

системы до исследуемого сегмента. Форма пульсовой волны давления была 

заимствована из литературных данных (Alastruey J. и др., 2016). Стенд был 

успешно апробирован на предмет соответствия заявленным характеристикам 

потока: от 60 до 130 мм рт. ст., от 3 до 6 л/мин, частоты пульсаций 0,5; 1 и 

1,5 Гц.  

 

 
Рисунок 4. Лабораторный стенд, включающий генератор пульсаций (а) и 

тест-объект (б); генератор пульсаций включает: 1 – частотный 

преобразователь, 2 – расходомер, 3 – датчик давления, 4 – bypass, 5 – 

резервуар, 6 – насос, 7 – интерфейс пользователя, 8 – краны. Представлены 

бесконтрастная (в) и контрастно-усиленная (г) фазы сканирования 

тест-объекта 

 

Важным элементом стенда является тест-объект, имитирующий сегмент 

брюшной аорты. Существующие решения сосредоточены либо на 

биомеханических, либо на рентгеновских свойствах сосуда. Материалы для 

изготовления тест-объекта были определены в ходе литературного обзора. 

Был выбран подход армирования силиконового матрикса (твердость по Шору 

30А) полиуретановыми нитями (Kwon, J. и др., 2020): прочность на разрыв 

2,15 ± 0,15 МПа, деформация при разрыве 3,18 ± 0,05 мм/мм.  

Исследование тест-объекта (внутренний диаметр 25 мм, толщина стенки 

2 ± 0,2 мм) в составе разработанного стенда было проведено на базе ГБУЗ 

«ГКБ № 52 ДЗМ». Анализ КТ-изображений позволил оценить диапазон КТ-

плотности тест-объекта и подтвердить не только соответствие литературным 

значениям, но и наличие эффекта, аналогичного наблюдаемому in vivo, 

неотличимости стенки от просвета при контрастном усилении. Значения КТ-

плотности распределены нормально (p > 0,05; тест Шапиро-Уилка), среднее 
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значение и среднеквадратическое отклонение составили 161 HU и 17 HU 

соответственно. При сопоставлении КТ-плотности РКВ (Omnipak iohexol 350) 

и стенки разработанного тест-объекта значение p составило 0,89. 

Требования к параметрам стенда и значения, полученные в ходе 

экспериментальной апробации, обобщены в Таблице 1. 

 

Таблица 1. 

Параметры разработанного стенда 

Параметр Требование* Результат 

Частота пульсации, Гц 0-3,0 0,5; 1,0; 1,5 

Давление, мм рт. ст. 60-130 60-130 

Объемная скорость потока, л/мин 3-6 3-6 

Линейная скорость потока, м/с 0,2-0,5 0,25-0,47 

Разрушающее напряжение, МПа 1,5-5,0 2,15 ± 0,15* 

Максимальное  

относительное удлинение, мм/мм 
2,0-2,3 3,18 ± 0,05* 

КТ-плотность  

в ангиографической фазе, HU 
100-500 161 ± 34 

Диаметр, мм 20-50 30 ± 0,5 

Толщина стенки, мм 1,5-3,0 2 ± 0,2 

* согласно литературным данным 

 

В четвертой главе представлена алгоритмизация модели и 

разработанное программное обеспечение (ПО), сформированы требования к 

аппаратной реализации: частота процессора – 2,9 ГГц, 6 ядер, 12 потоков, 

16 ГБ оперативной памяти, объем хранилища – 512 ГБ, диагональ 

монитора – 21”, разрешение монитора – 1600х1200, 10 битная разрядность. 

Изложена методика формирования наборов данных для апробации модели.  

Для создания набора данных реальных пациентов сформулировано 

техническое задание и разработана методика полуавтоматической 

сегментации брюшного отдела аорты на КТА-изображениях. Разработан 

математический алгоритм автоматической сегментации КТА-данных, 

использующий признаки формы, связности и характерный диапазон значений 

КТ-плотности брюшной аорты (Рисунок 5).  

 

 
Рисунок 5. Этапы работы алгоритма автоматической сегментации аорты на 

КТА-изображениях 
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Первичная апробация разработанного алгоритма автоматической 

сегментации КТА-данных на выборке из 829 КТ-изображений (10 

КТ-исследований) показала медианное значение коэффициента 

Дайса-Соренсона 0,9 (интерквартильный размах [0,87; 0,96]). 

Разработанный метод синтеза бесконтрастных размеченных КТ-

изображений брюшного отдела аорты реализован в программном 

обеспечении, на которое получено свидетельство о регистрации. Алгоритм 

обработки КТА-исследования включает три этапа. На первом этапе 

проводится разметка брюшного отдела аорты на КТА-изображениях 

полуавтоматическим либо автоматическим методом с привлечением врача-

рентгенолога для контроля результатов разметки. В рамках первого этапа 

проводится также необходимая для корректной работы модели предобработка 

размеченных данных, включающая автоматическую локализацию областей 

кальцинированной стенки аорты и расширение маски для захвата 

окружающих аорту тканей. На втором этапе результаты сегментации и КТА-

изображения используются для аппроксимации РКВ-индуцированного 

компонента. Заключительный этап представляет собой скорректированное 

вычитание РКВ-индуцированного компонента из КТА-изображений в области 

брюшной аорты с получением синтезированных бесконтрастных КТ-

изображений. Обработка данных на втором и третьем этапах проводится 

автоматически. 

Статистический анализ результатов апробации метода синтеза 

бесконтрастных размеченных КТ-изображений брюшного отдела аорты 

проведен с использованием параметрических (парный и непарный t-тест 

Стьюдента для связанных и независимых сравнений, дисперсионный 

ANOVA-анализ и пост-апостериорный тест Тьюки для множественных 

сравнений, коэффициент корреляции Пирсона) и непараметрических (парный 

W-тест Вилкоксона для связных выборок, U-тест Манна-Уитни для 

независимых выборок, тест Крускалла-Уоллеса и пост-апостериорный тест 

Данна для множественных сравнений, коэффициент корреляции Спирмена) 

критериев в зависимости от типа распределения данных. Нормальность 

распределения данных определена с помощью теста Колмогрова-Смирнова 

либо Шапиро-Уилка, в зависимости от размера выборки. Уровень значимости 

принятия нулевой гипотезы для всех критериев – 0,05. Для оценки ошибки 

аппроксимации использована величина RMSE. Выборки сопоставлены 

следующим образом: исходные данные и результаты аппроксимации – 

связанные выборки, синтезированные и реальные бесконтрастные 

изображения – независимые выборки. На основании выбранных метрик 

качества определены требования к минимальному размеру выборки (уровень 

доверия 0,99): число точек в области интереса на КТ-изображении составляет 

не менее 231; число изображений в КТ-исследовании – не менее 109; число 

КТ-исследований соответствует числу основных вариаций протоколов 

сканирования КТА ОБП. К тест-объекту предъявлены требования в 

соответствии с ГОСТ Р 8.736-2011: необходимо проведение как минимум трех 

измерений. Для построения доверительных интервалов по полученным 
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оценкам применялся метод аугментации выборки (Chernick M., 2014). 

Характеристики набора данных для апробации модели представлены в 

Таблице 2.  

Таблица 2. 

Параметры набора данных для апробации модели 

Параметр Тест-объект Пациенты 

Среднее точек в 

области интереса                                        
1000 

Число изображений 
44 (1 КТ-

исследование) 
2939 (20 КТ-исследований) 

Аппарат 
Canon Aquilion 

Prime SP 

Canon Aquilion Prime, Canon 

Aquilion 64, GE LightSpeed VCT 

Протокол 

сканирования 
«КТ ОБП» 

«КТ ОБП c внутривенным 

контрастным усилением», «КТА 

брюшной аорты и ее ветвей» 

Напряжение (кВ) и 

ток (мАс) трубки 
120; 80 100 или 120; 200 (80; 498) 

Фильтр 

реконструкции 
FС18 (soft) 

FC07 (soft), FC08 (abdomen), FC18 

(soft), SOFT, STANDARD 

Толщина среза, мм 1 1; 1,25 

 

Результаты парного W-теста для исходных и аппроксимированных 

данных, полученных при сканировании тест-объекта, демонстрируют 

принятие нулевой гипотезы об отсутствии статистически значимых различий: 

медианное значение p = 0,15 (интерквартильный размах [0,08; 0,37]). 

Результаты расчета RMSE аппроксимации распределения РКВ 

демонстрируют диапазон от 7,3 HU до 12,1 HU при медианном значении 

10 HU. Сопоставление рассчитанных значений RMSE с уровнем шума, 

оцениваемого как СКО значений КТ-плотности в просвете сосуда, с помощью 

парного W-теста демонстрирует принятие альтернативной гипотезы: «RMSE 

меньше СКО» (p < 0,001). При этом величина разницы между СКО и RMSE 

строго положительна. Результаты сопоставления синтезированных и реальных 

бесконтрастных изображений области аорты на аксиальных томографических 

проекциях с помощью U-теста демонстрирует принятие нулевой гипотезы об 

отсутствии статистически значимых различий: медианное значение p 

составило 0,17 (интерквартильный размах [0,07; 0,55]). Пример 

аппроксимации данных представлен на Рисунке 6. 
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Рисунок 6. Пример наложения результатов аппроксимации (зеленый цвет) и 

исходных данных (черный цвет) для сигналов различной формы; показаны 

одномерные распределения РКВ (в единицах HU) на аксиальной проекции во 

фронтальном направлении 

 

Результаты парного W-теста для исходных и аппроксимированных 

данных пациентов демонстрирует принятие нулевой гипотезы об отсутствии 

статистически значимых различий: интерквартильный размах значений p 

составил [0,4; 0,8]. Значения RMSE для аппроксимированных и исходных 

данных вариабельны и находятся в диапазоне [4,6; 61,9] HU, 95 % 

доверительный интервал для RMSE составил (13,9; 14,4) HU при среднем 

значении 14,2 HU. Сопоставление значения RMSE и уровня шума, как и при 

исследовании тест-объекта, демонстрирует принятие альтернативной 

гипотезы: «RMSE меньше СКО» (p < 0,001).  

Индивидуальные особенности пациентов, вызывающие артефакты КТ-

изображений, смещения пациента в ходе КТ-исследования, разные параметры 

сканирования в контрастно-усиленной и бесконтрастной фазах приводят к 

невозможности сопоставления синтезированных и реальных бесконтрастных 

КТ-изображений. Среди отобранных 20 КТ-исследований, 10 (1717 

изображений) имели одинаковые значения тока и напряжения рентгеновской 

трубки. С учетом сложности сегментации бесконтрастных КТ-изображений, 

сравнение синтезированных и реальных изображений было проведено только 

для области внутри сосуда без учета стенки. Результаты сопоставления 

синтезированных и реальных бесконтрастных изображений для указанной 

выборки с помощью U-теста демонстрируют принятие нулевой гипотезы об 

отсутствии статистически значимых различий: медианное значение p 

составило 0,17 (интерквартильный размах [0,16; 0,18]).  

Реалистичность синтезированных изображений также была исследована 

в ходе экспертного анализа данных. Три врача-рентгенолога (опыт работы 

каждого не менее трех лет) провели независимую визуальную экспертную 

классификацию смешанной выборки, содержащей реальные и 
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синтезированные бесконтрастные КТ-изображения брюшной аорты. Было 

проанализировано 14 КТ-исследований (баланс классов 1:1) с общим числом 

КТ-изображений равным 35, формат изображений – DICOM, инструмент для 

анализа – «Vidar Dicom Viewer». Согласно полученным результатам, 

относительная частота корректной классификации синтезированных 

изображений составила от 57 % до 71 %, реальных изображений – от 28 % до 

71 %. При этом, относительная частота корректно классифицированных КТ-

изображений, в целом, близка к случайной и составляет от 50 % до 64 % 

(среднее значение 55 %). Каппа Флейса составила 0,125, что говорит о низкой 

согласованности результатов классификации между экспертами и 

свидетельствует об отсутствии в синтезированных изображениях 

специфических паттернов, позволяющих экспертам однозначно отделить их 

от реальных изображений. Примеры классифицированных экспертами 

изображений из выборки реальных и синтезированных КТ-исследований 

представлены на Рисунке 7. 

 

 
Рисунок 7. Примеры реальных (а) и синтезированных (б) изображений. 

Ответы экспертов отмечены квадратами: серый для ошибочного, белый для 

верного ответа.  Случаи полного согласия отмечены прямоугольниками 

 

Для оценки эффекта от внедрения разработанных метода и средств 

синтеза бесконтрастных КТ-изображений было проведено пилотное 

исследование на базе НПКЦ ДиТ ДЗМ. Существующий метод разметки – 

последовательная ручная сегментация бесконтрастных КТ-изображений 

двумя врачами-рентгенологами с привлечением эксперта. Предложенный 

метод разметки – полуавтоматическая сегментация контрастно-усиленных 

КТ-данных, верификация результатов одним врачом-рентгенологом и 

подавление РКВ в автоматическом режиме с помощью разработанного ПО. 
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Показано, что предложенный метод позволяет снизить временные затраты на 

подготовку одного набора данных в 4 раза, а дополнительное использование 

алгоритма автоматической разметки КТА в перспективе позволит снизить 

время обработки данных в 11 раз. Пример использования разработанных 

метода и средств для синтеза размеченных бесконтрастных КТ-изображений 

брюшной аорты представлен на Рисунке 8. На Рисунке 9 продемонстрирована 

сохранность кальцинатов в стенке сосуда при подавлении РКВ, что может 

быть в дальнейшем использовано для повышения информативности анализа 

КТА-изображений. 

 
                    Разметка КТА                Подавление РКВ                  Результат 

 

Рисунок 8. Пример синтеза размеченного КТ-изображения из КТА-данных за 

счет подавления РКВ 

 
Рисунок 9. Пример результата подавления РКВ при наличии кальцинатов в 

стенке 

 

Подготовленный с использованием разработанных метода и средств 

набор данных были использован для обучения алгоритма сегментации и 

оценки размеров брюшной аорты на бесконтрастных КТ-данных. Размер 

обучающей выборки (синтезированные данные) – 300 изображений, тестовой 

(реальные данные) – 185 изображений, архитектура сети – U-net. Пример 

работы алгоритма сегментации, обученного на синтезированных данных, 

приведен на Рисунке 10.  
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Рисунок 10. Примеры работы алгоритма сегментации, обученного на 

синтезированных данных 

 

Представленные результаты носят предварительный характер, тем не 

менее, демонстрируют способность алгоритма, обученного исключительно на 

данных, синтезированных с помощью разработанного в настоящей 

диссертации метода, локализовать и оценить диаметр аорты на 

бесконтрастных КТ-изображениях. 

 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ 

 

1. Разработана модель двумерного распределения 

рентгеноконтрастного вещества в просвете и стенке брюшного отдела аорты 

на аксиальных томографических проекциях в виде набора одномерных 

распределений в сагиттальном и фронтальном направлениях, построенных на 

основе сумм двух сигмоидов. 

2. Разработан экспериментальный стенд, позволяющий имитировать 

пульсовую волну давления в диапазоне давления от 60 до 130 мм рт. ст., 

объемной скорости от 3 л/мин до 6 л/мин при корректном (критерий Спирмена 

rho = 0,96; тест Колмогрова-Смирнова p = 0,8) воспроизведении формы 

пульсовой волны при частотах 0,5 Гц, 1 Гц и 1,5 Гц. 

3. Разработан тест-объект, материал которого представляет собой 

сочетание силиконового матрикса и армирующих термопластичных 

полиуретановых нитей, имитирующий не только биомеханические 

(разрушающее напряжение 2,15 ± 0,15 МПа, максимальное относительное 

удлинение 3,18 ± 0,05 мм/мм), но и рентгеновские характеристики брюшного 

отдела аорты в контрастно-усиленной фазе сканирования: среднее значение и 

СКО КТ-плотности составляют 161 HU и 17 HU соответственно. 

4. Разработанная модель позволяет аппроксимировать 

РКВ-индуцированный компонент сигнала КТ-плотности со значением 

среднеквадратической ошибки в диапазоне от 7 HU до 15 HU, что 

статистически значимо (p < 0,001) меньше, чем уровень шума на 

аппроксимируемых контрастно-усиленных КТ-изображениях. 

5. Разработанные метод и средства позволяют решить задачу синтеза 

размеченных бесконтрастных КТ-изображений брюшного отдела аорты за 

счет подавления контрастного усиления в данных КТА. 
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6. Использование разработанного метода получения бесконтрастных 

размеченных КТ-изображений брюшного отдела аорты позволяет сократить 

время подготовки набора данных для обучения и тестирования алгоритмов 

оппортунистического КТ-скрининга АБА в 4 раза. 
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