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Общая характеристика работы

Актуальность исследования. Задачи термоупругости возникают
в самых разных областях инженерного дела: аэрокосмической отрасли,
строительстве, микроэлектронике и многих других. Передовые технологии
таких отраслей, как правило, тесно связаны с созданием новых мате­
риалов. При этом часто требования уже настолько высоки, что при их
создании необходимо учитывать молекулярную структуру материала, на­
прямую влияющую на свойства среды. Такие материалы принято называть
структурно-чувствительными.

Важным этапом в создании новых материалов является построение
математической модели, способной адекватно описывать их поведение.
Классические материалы можно описать моделями механики сплошной
среды, однако, когда речь идет о структурно-чувствительных материалах,
где величина структуры не превышает нескольких десятков наномет­
ров, гипотеза сплошности нарушается, из-за чего приходится прибегать
к другим моделям, например, моделям молекулярной динамики или ста­
тистическим моделям. Анализ такого рода моделей очень ограничен без
численного эксперимента, а для проведения полноценного эксперимента
необходимы большие вычислительные мощности, которые не всегда до­
ступны исследователю. В связи с этим в середине XX века набирают
популярность модели обобщённой механики сплошной среды, которые мо­
гут учесть такие явления, как микровращения отдельных зёрен материала,
микродислокации, различные дальнодействующие и многие другие мас­
штабные эффекты.

В диссертационной работе рассмотрен класс моделей, обеспечива­
ющих описание дальнодействующих эффектов путём обобщения клас­
сических уравнений механики сплошной среды и представлении их в
интегро-дифференциальной форме. Такие модели принято называть нело­
кальными, а их разработка активно велась в рамках работ следующего
списка авторов: E. Kröner, D.G.B. Edelen, A.C. Eringen, D. Rogula,
S.B. Altan, C. Polizzotto, A.A. Pisano, В.В. Васильев, С.А. Лурье, С.Л. Со­
болев, В.С. Зарубин, Г.Н. Кувыркин, И.Ю. Савельева и многие другие.

В практических приложениях на основе математической модели
необходимо решать большую серию задач, не все из них обладают ана­
литическими решениями. В связи с этим необходимо развивать подходы
с использованием численных методов решения уравнений с последующей
реализацией в виде программного комплекса. В диссертационной работе
этому аспекту уделено особое внимание. За основу численной схемы был
взят метод конечных элементов, его реализация стала частью программ­
ного комплекса NonLocFEM.

Целью исследования является изучение особенностей разработан­
ных двумерных моделей нелокальной теплопроводности и термоупругости,
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а также сравнительный анализ решений в случае классических и нелокаль­
ных моделей механики сплошной среды.

Для достижения поставленной цели потребовалось решить задачи.
1. Разработать определяющие соотношения двумерных моделей

теплопроводности и термоупругости нелокальной среды в интегро-диф­
ференциальной форме, а также реализовать эффективные алгоритмы
численного решения на основе метода конечных элементов с последующей
реализацией в виде собственного программного комплекса.

2. Разработать экономичные способы предобуславливания получа­
емых при аппроксимации систем линейных алгебраических уравнений
(СЛАУ) с целью ускорения сходимости итерационных методов решения.

3. Исследовать особенности нелокальных моделей, сопоставить полу­
ченные результаты в задачах с известными решениями в классической
постановке, определить закономерности.

Научная новизна:
1. Предложены новые эффективные численные алгоритмы для за­

дач нелокальной теплопроводности и нелокальной термоупругости на
основе метода конечных элементов, которые обладают хорошей масшта­
бируемостью и предназначены для вычислений на многопроцессорных
вычислительных машинах с общей и распределённой памятью.

2. Разработан собственный программный комплекс NonLocFEM, в ко­
тором реализованы все представленные в работе алгоритмы и методы для
моделирования поведения структурно-чувствительных материалов.

3. Получены новые результаты в задачах с известными для класси­
ческой постановки решениями, установлены закономерности, свидетель­
ствующие о снижении роли концентраторов в распределениях полей
напряжений и плотности теплового потока.

4. Исследованы границы спектров собственных чисел матриц и
установлены связи между спектрами матриц, ассемблированных в клас­
сической и нелокальной постановках.

Практическая значимость моделей, рассмотренных в диссер­
тации, состоит в возможности описания поведения термомеханических
состояний структурно-чувствительных материалов. Параметры модели
очевидным образом влияют на решения, что дает возможность точ­
но настраивать модель для применения на практике. Разработанный
программный комплекс, в котором реализованы численные алгоритмы
исследования разработанных моделей, позволит проводить расчёты на про­
извольных областях со всеми рассматриваемыми в моделе параметрами, а
благодаря открытому исходному коду и модульной структуре существует
возможность редактировать существующие постановки и добавлять новые
типы расчётов при модификации математической модели.

Методы исследования. В диссертации использованы как класси­
ческие принципы механики деформируемого твёрдого тела, так и новые,
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относящиеся к нелокальным теориям теплопроводности и термоупругости,
а также численные методы, в основе которых лежит метод конечных эле­
ментов.

Основные положения, выносимые на защиту:
1. Модели нелокальной теплопроводности и термоупругости, позво-

ляющие описать процессы передачи теплоты и напряжённо-деформирован­
ного состояния в структурно-чувствительных материалах.

2. Новые численные алгоритмы решения на основе метода конечных
элементов, адапатированные под многопроцессорные вычислительные си­
стемы.

3. Собственный программный комплекс NonLocFEM, в рамках кото­
рого реализованы все рассматриваемые в работе методы решений.

Достоверность результатов гарантирована строгостью и полно­
той использования возможностей математического аппарата, сравнением
результатов многочисленных проведеннных расчетов с известными анали­
тическими решениями и данными, полученными ранее другими авторами.

Апробация работы проводилась в обсуждениях на следующих
конференциях: Международная научно-техническая конференция «Ак­
туальные проблемы прикладной математики, информатикии и механи­
ки» (Воронеж, 2019, 2021); Международная конференция «International
Conference of Numerical Analysis and Applied Mathematics» (Родос, Греция,
2021); Международная научная конференция «Фундаментальные и при­
кладные задачи механики» (Москва, 2021); Всероссийская конференция
по численным методам решения задач теории упругости и пластичности
(Красноярск, 2023); Международная конференция «Математическое мо­
делирование, численные методы и инженерное программное обеспечение»
(Москва, 2023).

Тема диссертации согласована с тематикой грантов, выделенных
на фундаментальные исследования: 0705-2020-0047 «Теория дифференци­
альных уравнений, краевые задачи, связанные задачи анализа и теории
приближений и некоторые их приложения»; FSFN-2023-0012 «Разработка
математических моделей и методов проектирования изделий ракетно-кос­
мической техники из перспективных конструкционных и функциональных
материалов»; FSFN-2024-0004 «Разработка математических моделей и
методов проектирования изделий ракетно-космической техники из перспек­
тивных конструкционных и функциональных материалов».

Публикации. Основные результаты по теме диссертации изложены
в 5 печатных изданиях, 2 из которых изданы в журналах, рекомендован­
ных ВАК РФ, 3 — в периодических научных журналах, индексируемых
Web of Science и Scopus. Зарегистрирована 1 программа для ЭВМ.

Личный вклад соискателя. Все исследования, представленные
в диссертационной работе, а также разработка программного комплекса
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выполнены лично соискателем в процессе научной деятельности. Из сов­
местных публикаций в диссертацию включен лишь тот материал, который
принадлежит соискателю, заимствованный материал обозначен в работе
ссылками.

Объем и структура работы. Диссертация состоит из введения, 5
глав, заключения и приложения. Полный объём диссертации составляет
111 страниц, включая 37 рисунков и 9 таблиц. Список литературы содер­
жит 138 наименований.

Содержание работы

Во введениии обоснована актуальность исследований, проводимых
в рамках данной диссертационной работы, приведён обзор научной лите­
ратуры, сформулированы цели исследования, поставлены задачи, а также
изложена научная новизна и практическая значимость.

Первая глава посвящена описанию основных соотношений моделей
нелокальной теплопроводности и термоупругости.

В разделе 1.1 представлен интегральный нелокальный оператор

𝒩 [𝑓(𝑥)] = 𝑝1𝑓(𝑥) + 𝑝2

∫︁
𝑆′(𝑥′)∩𝑆

𝜙(𝑥,𝑥′)𝑓(𝑥′)𝑑𝑆′(𝑥′), 𝑥′ ∈ 𝑆′(𝑥). (1)

Здесь 𝑓(𝑥) — выражение, описывающее сохраняющуюся физическую суб­
станцию; 𝑝1 > 0 и 𝑝2 ⩾ 0 — весовые параметры модели такие, что
𝑝1 + 𝑝2 = 1; 𝜙 — функция нелокального влияния, нормированная поло­
жительная монотонно убывающая функция в области 𝑆′(𝑥); 𝑥′ — точка в
области 𝑆′(𝑥); 𝑆′(𝑥) — область нелокального влияния с центром в точке
𝑥 ∈ 𝑆; 𝑆 — область, занимаемая рассматриваемым телом.

В разделе 1.2 представлено описание уравнения стационарной тепло­
проводности

∇ · 𝑞 = 𝑞𝑉 , (2)

где 𝑞𝑉 — объёмная плотность мощности внутренних источников и стоков
теплоты, а вектор плотности теплового потока 𝑞 определён как обобщён­
ный закон Био — Фурье с использованием нелокального оператора (1)

𝑞(𝑥) = 𝒩
(︁
−̂︀𝜆 · ∇𝑇

)︁
.

Здесь ̂︀𝜆 — тензор теплопроводности; 𝑇 = 𝑇 (𝑥) — поле температуры.
В разделе 1.3 представлено описание уравнения равновесия

−∇ · ̂︀𝜎 = 𝑏, (3)
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где 𝑏 — вектор плотности объёмных сил; тензор напряжений ̂︀𝜎, определён,
как обобщённый закон Дюамеля — Неймана с использованием нелокаль­
ного оператора (1)

̂︀𝜎(𝑥) = 𝒩
(︁̂︀C · ·

(︁̂︀𝜀− ̂︀𝛼𝑇∆𝑇
)︁)︁

,

где ̂︀𝜀 = (∇𝑢+(∇𝑢)𝑇 )/2 — тензор деформации; 𝑢 — вектор перемещений; ̂︀C
— тензор коэффициентов упругости; ̂︀𝛼𝑇 — тензор температурных коэффи­
циентов линейного расширения; ∆𝑇 = 𝑇 − 𝑇0 — разница между текущим
распределением температуры 𝑇 и распределением 𝑇0, при котором отсут­
ствуют температурные деформации.

В разделе 1.4 определены два семейства функций нелокального вли­
яния 𝜙: полиномиальное семейство функций на ограниченных областях
нелокального влияния 𝑆′(𝑥)

𝜙𝑃
𝑝,𝑞(𝑥,𝑥

′) =

{︃
𝐴(1− 𝜌𝑛(𝑥,𝑥

′)𝑝)𝑞, 𝜌𝑛(𝑥,𝑥
′) ⩽ 1,

0, 𝜌𝑛(𝑥,𝑥
′) > 1,

(4)

и экспоненциальное семейство функций на неограниченных областях нело­
кального влияния 𝑆′(𝑥)

𝜙𝐸
𝑝,𝑞(𝑥,𝑥

′) = 𝐴 exp (−𝑞𝜌𝑛(𝑥,𝑥
′)𝑝) . (5)

Параметры для обеих семейств функций имеют одинаковый смысл: 𝑝 и
𝑞 — параметры плотности распределения; 𝐴 — нормировочный множитель;
𝜌𝑛(𝑥,𝑥

′) — метрическая функция.
Вторая глава посвящена построению численных схем решения урав­

нений стационарной теплопроводности и равновесия. В основе численных
схем использован метод конечных элементов.

В разделе 2.1 очень кратко изложены базовые соотношения метода
конечных элементов: определено понятие конечного элемента, свойства ба­
зиса конечного элемента, способ перехода от локальной системы координат
элемента к глобальной и применение конечных элементов для аппрокси­
мации функций.

В разделе 2.2 описан способ аппроксимации уравнений стационарной
теплопроводности (2) и равновесия (3), а также приведена последователь­
ность преобразований, после которых приходим к СЛАУ, соответствующим
уравнению стационарной теплопроводности и уравнению равновесия(︁

𝑝1 ̂︀K𝐿

𝑇 + 𝑝2 ̂︀K𝑁𝐿

𝑇 + ̂︀K𝛼

𝑇

)︁
· T = Q + F + T𝛼, (6)(︁

𝑝1 ̂︀K𝐿

𝐸 + 𝑝2 ̂︀K𝑁𝐿

𝐸

)︁
· ̂︀U = 𝑝1̂︀E𝐿

+ 𝑝2̂︀E𝑁𝐿
+ ̂︀B + ̂︀P. (7)
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Здесь ̂︀K𝐿

𝑇 и ̂︀K𝑁𝐿

𝑇 — матрицы локальной и нелокальной теплопроводности;̂︀K𝛼

𝑇 — матрица теплообмена; T — вектор искомых узловых значений тем­
пературы; Q и F — векторы дискретизированных внутренних и внешних
источников и стоков теплоты; T𝛼 — вектор дискретизированного теп­
лообмена; ̂︀K𝐿

𝐸 и ̂︀K𝑁𝐿

𝐸 — матрицы локальной и нелокальной жёсткости;̂︀U — вектор искомых узловых перемещений; ̂︀B и ̂︀P — векторы дискретизи­
рованных плотностей объёмных и поверхностных сил; ̂︀E𝐿

и ̂︀E𝑁𝐿
— векторы

локального и нелокального температурного линейного расширения. В си­
лу того, что матрицы ̂︀K𝐿

𝐸 и ̂︀K𝑁𝐿

𝐸 имеют блочную структуру, с размером
блока 2× 2, для удобства дальнейшего изложения будем представлять их
в виде аналогов (по количеству индексов) тензоров четвёртого ранга, где
первые два индекса обозначают строку и столбец с указанием блока, а
вторые — строку и столбец внутри блока. Аналогично представим векто­
ры ̂︀U, ̂︀B, ̂︀P, ̂︀E𝐿

и ̂︀E𝑁𝐿
в виде тензоров второго ранга, где первый индекс

соответствует номеру узла, а второй — номеру координатной компоненты.
В разделе 2.3 описаны алгоритмы ассемблирования слагаемых

СЛАУ, а также представлен способ квадратурной аппроксимации об­
ласти нелокального влияния 𝑆′(𝑥). При данном способе аппроксимации
область 𝑆𝑞

ℎ с центром в квадратурном узле 𝑥𝑞 стоит аппроксимировать
путём включения тех элементов, квадратурные узлы которых хотя бы
частично попали в область 𝑆′(𝑥𝑞). Иллюстрация способа представлена
на Рис. 1, где крестом отмечен квадратурный узел, относительно которо­
го происходит аппроксимация, точками — все остальные квадратурные
узлы, кругом очерчена область нелокального влияния 𝑆′(𝑥), а серым
цветом выделены элементы, образующие аппроксимированную область
нелокального влияния 𝑆𝑞

ℎ.

Рис. 1. Квадратурная аппроксимация области нелокального влияния

Матрицы СЛАУ имеют блочную структуру, поэтому введены поня­
тия блоков матриц для уравнения теплопроводности

̃︀K𝑒1𝑒2

𝑛𝑚 (𝑥,𝑦) = 𝜆𝑖𝑗𝑁
𝑒1
𝑛,𝑖(𝑥)𝑁

𝑒1
𝑚,𝑗(𝑦)𝐸𝑛 ⊗𝐸𝑚,
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и уравнения равновесия̂︀K𝑒1𝑒2

𝑛𝑚 (𝑥,𝑦) = 𝐶𝑖𝑗𝑘𝑙𝑁
𝑒1
𝑛,𝑘(𝑥)𝑁

𝑒2
𝑚,𝑙(𝑦)𝐸𝑛 ⊗𝐸𝑚 ⊗ 𝑒𝑖 ⊗ 𝑒𝑗 ,

где 𝐸𝑛 — единичный вектор размерности 𝑀 ; 𝑒𝑖 — единичный вектор раз­
мерности 2; 𝑖,𝑗,𝑘,𝑙 = 1,2; 𝑛,𝑚 = 1,𝑀 ; 𝑀 — количество узлов в сетке 𝑆ℎ. Для
общности алгоритмов обозначим блок матрицы одним символом K𝑒1𝑒2

𝑛𝑚 . То­
гда алгоритм ассемблирования локальной матрицы принимает форму̂︀K𝐿

ℱ =
∑︁
𝑒∈𝑆ℎ

∑︁
𝑛,𝑚∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞K𝑒𝑒
𝑛𝑚(𝑥𝑞,𝑥𝑞)𝐽

𝑒
𝑞 . (8)

Применим квадратурную аппроксимацию области нелокального влияния
𝑆′(𝑥), тогда алгоритм ассемблирования нелокальной матрицы представим
в следующем виде̂︀K𝑁𝐿

ℱ =
∑︁
𝑒∈𝑆ℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝐽
𝑒
𝑞

∑︁
𝑒′∈𝑆𝑞

ℎ

∑︁
𝑚′∈𝐼𝑒′

∑︁
𝑞′∈𝑄𝑒′

𝑤𝑞′𝜙(𝑥𝑞,𝑥𝑞′)K𝑒𝑒′

𝑛𝑚′(𝑥𝑞,𝑥𝑞′)𝐽
𝑒′

𝑞′ .

(9)

Здесь 𝑤𝑞 — весовой множитель в квадратурном узле под номером 𝑞; 𝐽𝑒
𝑞 —

якобиан преобразования из локальной системы в глобальную, аппроксими­
рованный в квадратурном узле под номером 𝑞 на элементе под номером 𝑒.

Далее по аналогии выписаны алгоритмы ассемблирования матрицы
теплообмена и векторов правой части для уравнения теплопроводности̂︀K𝛼

𝑇 =
∑︁
𝑒∈Γℎ

∑︁
𝑛,𝑚∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝛼𝑁
𝑒
𝑛(𝑥𝑞)𝑁

𝑒
𝑚(𝑥𝑞)𝐽

𝑒
𝑞𝐸𝑛 ⊗𝐸𝑚,

T𝛼 =
∑︁
𝑒∈Γℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝛼𝑁
𝑒
𝑛(𝑥𝑞)𝑇𝛼(𝑥𝑞)𝐽

𝑒
𝑞𝐸𝑛,

Q =
∑︁
𝑒∈𝑆ℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝑞𝑉 (𝑥𝑞)𝐽
𝑒
𝑞𝐸𝑛, F =

∑︁
𝑒∈Γℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝑓(𝑥𝑞)𝐽
𝑒
𝑞𝐸𝑛,

а также алгоритмы ассемблирования векторов правой части для уравне­
ния равновесия̂︀B =

∑︁
𝑒∈𝑆ℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝑏(𝑥𝑞)𝐽
𝑒
𝑞𝐸𝑛, ̂︀P =

∑︁
𝑒∈Γℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝑝(𝑥𝑞)𝐽
𝑒
𝑞𝐸𝑛,

̂︀E𝐿
=
∑︁
𝑒∈𝑆ℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞∇𝑁𝑒
𝑛(𝑥𝑞)̂︀C · ·̂︀𝛼∆𝑇 (𝑥𝑞)𝐽

𝑒
𝑞𝐸𝑛,

̂︀E𝑁𝐿
=
∑︁
𝑒∈𝑆ℎ

∑︁
𝑛∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞∇𝑁𝑒
𝑛(𝑥𝑞)𝐽

𝑒
𝑞×

×
∑︁
𝑒′∈𝑆𝑞

ℎ

∑︁
𝑞′∈𝑄𝑒′

𝑤𝑞′𝜙(𝑥𝑞,𝑥𝑞′)̂︀C · ·̂︀𝛼∆𝑇 (𝑥𝑞′)𝐽
𝑒′

𝑞′𝐸𝑛.
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Отметим, что при аппроксимации вектора нелокального температурного
линейного расширения ̂︀E𝑁𝐿

также был применён способ квадратурной ап­
проксимации области нелокального влияния 𝑆′(𝑥).

В разделе 2.4 описаны алгоритмы вычисления производных величин,
таких как вектор плотности теплового потока 𝑞 и тензор напряжений ̂︀𝜎.
После решения СЛАУ уравнения теплопроводности (6) получаем сеточную
функцию температуры T, используя которую можем вычислить величину
вектора плотности теплового потока 𝑞 в квадратурном узле 𝑞

𝑞𝑞 =

⎛⎝−𝑝1𝜆𝑇𝑚𝑁𝑒
𝑚,𝑘(𝑥𝑞)− 𝑝2

∑︁
𝑒′∈𝑆𝑞

ℎ

∑︁
𝑞′∈𝑄𝑒′

𝑤𝑞′𝜆𝑇𝑚′𝑁𝑒
𝑚′,𝑘(𝑥𝑞′)𝐽

𝑒′

𝑞′

⎞⎠ 𝑒𝑘.

Аналогично после решения СЛАУ уравнения равновесия (7) получаем
сеточную функцию вектора перемещений ̂︀𝑈 , используя которую можем
вычислить деформации ̂︀𝜀, а затем и напряжения

̂︀𝜎𝑞 =

(︃
𝑝1𝐶𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙(𝑥𝑞)− 𝛼𝑘𝑙∆𝑇𝑞)+

+ 𝑝2
∑︁
𝑒′∈𝑆𝑞

ℎ

∑︁
𝑞′∈𝑄𝑒′

𝑤𝑞′𝐶𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙(𝑥𝑞′)− 𝛼𝑘𝑙∆𝑇𝑞′) 𝐽
𝑒′

𝑞′

)︃
𝑒𝑘 ⊗ 𝑒𝑙.

Третья глава посвящена описанию реализации программного ком­
плекса NonLocFEM.

В разделе 3.1 описана общая схема программного комплекса
NonLocFEM, рассмотрена его структура, взаимосвязь модулей и их
предназначение. Иллюстрация структуры в виде схемы представлена
на Рис. 2, где зависимый модуль указывает стрелкой на модуль от ко­
торого он зависит.

Metamath Parallel

Mesh

Solvers

Математическое
ядро

Eigen

Обработчик
конфигурационных

файлов

nlohmann/json

Configs

NonLocFEM

Рис. 2. Структура программы NonLocFEM

В разделе 3.2 описаны способы оптимизации и распараллеливания ал­
горитмов ассемблирования матриц и правых частей.
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Оптимизация алгоритма ассемблирования была осуществлена пу­
тём изменения способа аппроксимации области нелокального влияния
𝑆′(𝑥). Вместо квадратурной аппроксимации предложен элементный способ
аппроксимации области нелокального влияния 𝑆′(𝑥). Основным отли­
чием данного способа от квадратурной аппроксимации является смена
набора точек, по которым происходит аппроксимация области. Вместо
аппроксимации относительно квадратурных узлов, поиск осуществляется
относительно центров элементов. Такой подход дает возможность раз­
делить алгоритмы заполнения матриц и интегрирования, что позволяет
оптимизировать их независимо друг от друга. Иллюстрация способа пред­
ставлена на Рис. 3, где крестом отмечен центр элемента, относительно
которого происходит аппроксимация, точками отмечены центры элемен­
тов, кругом очерчена область нелокального влияния 𝑆′(𝑥), а серым цветом
выделены элементы образующие аппроксимированную область нелокаль­
ного влияния 𝑆𝑒

ℎ.

Рис. 3. Элементная аппроксимация области нелокального влияния

Распараллеливание алгоритмов выполнено посредством изменения
порядка суммирования по элементам и проекционным узлам в алгоритмах
ассемблирования (8) и (9), но чтобы это сделать, необходимо для каждого
узла составить список элементов 𝐸𝑛, которым он принадлежит. В резуль­
тате алгоритмы принимают вид

̂︀K𝐿

ℱ =
∑︁
𝑛∈𝑆ℎ

∑︁
𝑒∈𝐸𝑛

∑︁
𝑚∈𝐼𝑒

∑︁
𝑞∈𝑄𝑒

𝑤𝑞K𝑒𝑒
𝑛𝑚(𝑥𝑞,𝑥𝑞)𝐽

𝑒
𝑞 ,

̂︀K𝑁𝐿

ℱ =
∑︁
𝑛∈𝑆ℎ

∑︁
𝑒∈𝐸𝑛

∑︁
𝑒′∈𝑆𝑒

ℎ

∑︁
𝑚∈𝐼𝑒′

∑︁
𝑞∈𝑄𝑒

𝑤𝑞𝐽
𝑒
𝑞

∑︁
𝑞′∈𝑄𝑒′

𝑤𝑞′𝜙(𝑥𝑞,𝑥𝑞′)K𝑒𝑒′

𝑛𝑚(𝑥𝑞,𝑥𝑞′)𝐽
𝑒′

𝑞′ .

(10)

При таком подходе сборка матриц происходит построчно, что открыва­
ет широкие возможности для распараллеливания. Каждая строка может
быть обработана независимо в отдельном потоке исполнения, а вычисление
группы строк легко распределить между процессами.
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В разделе 3.3 приведено описание алгоритма аппроксимации области
нелокального влияния 𝑆′(𝑥) на основе k-d дерева. Суть алгоритма заклю­
чается в дроблении области на равномерные ячейки, где длина стороны
ячейки равна радиусу поиска. Затем каждой ячейке присваивают узлы,
которые находятся в её области, после чего поиск соседних узлов относи­
тельно текущего рассматриваемого узла сужается до ячейки, в которой
он находится, и смежных с ней ячейкам, где уже используется алгоритм
линейного поиска. Сложность итогового алгоритма можно оценить как
𝑂(𝑁 log𝑁), где 𝑁 — количество узлов.

В разделе 3.4 описано семейство базисных функций квадратичного
серендипового (8-узлового) элемента. Данное семейство базисов обладает
свободным параметром 𝑠, вариация которого приводит к изменению числа
обусловленности матриц теплопроводности и жёсткости. Путём миними­
зации следа матрицы была предложена оценка, согласно которой числа
обсуловленности должны быть минимальными при 𝑠 = 2/9.

Четвёртая глава посвящена результатам расчётов с проведением
сравнительного анализа представленных в работе моделей.

В разделе 4.1 описана стратегия исследования, принятые гипоте­
зы, а также проведено обезразмеривание моделей теплопроводности и
термоупругости. Далее все безразмерные параметры и величины будем
обозначать теми же символами, что и в исходных уравнениях, но с чер­
той над символом.

В разделе 4.2 представлены основные особенности решений. Сравне­
ния локальной и нелокальной теорий при различных параметрах моделей
проводились на области 𝑆 = {𝑥 | − 0.5 ⩽ 𝑥1, 𝑥2 ⩽ 0.5}, где были решены
задача о прохождении сквозь неё теплового потока и задача об одноос­
ном растяжении. Было установлено, что решения в нелокальном случае
обладают кромочным эффектом, который характеризуется увеличенными
значениями температуры и перемещений на кромках, где заданы нагру­
жения. Также было установлено появление ненулевых полей компоненты
вектора плотности теплового потока 𝑞2 и касательной компоненты тензора
напряжений 𝜎12. Установлены зависимости влияния основных параметров
модели на распределения полей решений.

В разделе 4.3 проведён сравнительный анализ полиномиального (4)
и экспоненциального (5) семейств функций нелокального влияния. По­
казано, что оба семейства имеют одинаковое поведение при вариации
параметров, обозначенных одними и теми же символами. В заключении
раздела был сделан вывод, что качественных различий между решения­
ми при различных функциях нелокального влияния нет и выбор функции
влияет лишь на величину отклонений, поэтому дальнейшие исследования
были проведены с использованием квадратичной параболы, то есть была
выбрана функция полиномиального семейства (4) с параметрами 𝑛 = 2,
𝑝 = 2 и 𝑞 = 1.
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В разделе 4.4 изучены принципы стабильности теплового потока и
Сен-Венана. Для их изучения была рассмотрена прямоугольная область
𝑆 = {𝑥| − 5 ⩽ 𝑥1 ⩽ 5,−0.5 ⩽ 𝑥2 ⩽ 0.5}, на которой при изучении принципа
стабильности тепловых потоков для уравнения теплопроводности были по­
ставлены следующие граничные условия Неймана и, для единственности
решения, дополнительное интегральное условие:

𝑛 · 𝑞|𝑥1=−5 = 𝑓(𝑥2), 𝑛 · 𝑞|𝑥1=5 = −𝑓(𝑥2),

∫︁∫︁
𝑆

𝑇𝑑𝑆 = 0.

Аналогично при изучении принципа Сен-Венана были поставлены гранич­
ные и геометрические условия для уравнения равновесия:

𝑛𝑗𝜎𝑗1|𝑥1=−5 = −𝑓(𝑥2), 𝑛𝑗𝜎𝑗1|𝑥1=5 = 𝑓(𝑥2), 𝑢1|𝑥1=0 = 0, 𝑢2|𝑥2=0 = 0.

Здесь 𝑓 — нормированная функция. Исследованы три варианта нагру­
жения: равномерное и два треугольных, развёрнутых в разные стороны,
которые определены при помощи следующих функций

𝑓1(𝑥) = 1, 𝑓2(𝑥) = 2− 4|𝑥|, 𝑓3(𝑥) = 4|𝑥|.

Анализ решений показал, что при различных нагружениях первая
компонента вектора плотности теплового потока 𝑞1 и компонента тензора
напряжений 𝜎11 сливаются в общую поверхность вдали от точек приложе­
ния нагружений. В классическом случае решения сливаются в плоскость,
равную 1, нелокальные образуют более сложную поверхность. На Рис. 4
представлены распределения 𝑞1 и 𝜎11 в сечении 𝑥1 = 0, где из-за равен­
ства обозначены по оси ординат общим символом 𝒮. Нелокальные решения
имеют кромочный эффект, характеризующийся снижением рассматривае­
мой величины на свободных от условий границах и её увеличением внутри
области. При этом увеличение радиуса нелокальности 𝑟 приводит к уве­
личению размаха кромочного эффекта, а уменьшение параметра 𝑝1 — к
увеличению отклонений.

Во всех сечениях равнодействующие компоненты теплового потока
𝑞1 и напряжения 𝜎11 сохраняются и равны приложенным нагружениям:

0.5∫︁
−0.5

𝑞1𝑑𝑥2 =

0.5∫︁
−0.5

𝑓𝑖(𝑥2)𝑑𝑥2,

0.5∫︁
−0.5

𝜎11𝑑𝑥2 =

0.5∫︁
−0.5

𝑓𝑖(𝑥2)𝑑𝑥2, 𝑖 = 1,3.

Это свидетельствует о выполнении принципов стабильности теплового по­
тока и Сен-Венана, а также сохранении балансных соотношений.

В разделе 4.5 решена задача о растяжении пластины со ступенчатым
переходом. Здесь к Т-образной области были приложены граничные и гео­
метрические условия

𝑛𝑗𝜎𝑗2|𝑥2=0 = −1, 𝑢2|𝑥2=1 = 0, 𝑢1|𝑥1=0.5 = 0.
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Рис. 4. Распределение компоненты теплового потока 𝑞1 и компоненты тен­

зора напряжений 𝜎11 в сечении 𝑥1 = 0 при вариации 𝑟 (а) и 𝑝1 (б)

Проведённый анализ решений показал, что в нелокальном случае
решения обладают особенностями в углах между верхней и нижней ча­
стями области, где в смежной с концентратором верхней части области
наблюдаем области с отрицательными значениями деформации. Также от­
метим, что в нелокальном случае линии уровней обладают изломом вблизи
верхней границы, а вблизи с кромкой, к которой приложена нагрузка, по­
являются дополнительные линии уровней.

В разделе 4.6 решена задача Кирша с обобщением на эллиптические
вырезы (Рис. 5). Были поставлены следующие граничные и геометриче­
ские условия

𝑛𝑗𝜎𝑗1|𝑥1=−1 = −1, 𝑛𝑗𝜎𝑗1|𝑥1=1 = 1, 𝑢1|𝑥1=0 = 0, 𝑢2|𝑥2=0 = 0.

x 1

R1

x 2

R2

n
jσ

j1
=
-

1

n
jσ

j1
=

1

θ A

B

Рис. 5. Постановка задачи Кирша

Известно, что максимальные напряжения находятся в верхней и ниж­
ней точках выреза, а их величина в классическом случае подчиняется
следующей закономерности

𝜎max
11 = (1 + 2𝜌)𝜎0,
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где 𝜎0 — равнодействующая величина прикладываемого нагружения, а
𝜌 = 𝑅2/𝑅1. В диссертации показано, что в нелокальном случае появляет­
ся дополнительный множитель 𝜅, который зависит от весового параметра
модели 𝑝1. В этом случае

𝜎max
11 = 𝜅 (1 + 2𝜌)𝜎0.

Такая зависимость не имеет строго теоретического подтверждения и по­
лучена эвристически, однако, она может быть полезна для оценок в
практических расчётах. Дополнительно отметим лишь, что параметра 𝜅
уменьшается вместе с параметром 𝑝1, то есть максимальный уровень на­
пряжения в нелокальных постановках ниже, чем в классической.

В разделе 4.7 решена задача термоупругости в областях с эллип­
тическими вырезами (Рис. 6). Для этого были поставлены следующие
граничные и интегральные условия:

𝑛 · 𝑞|𝑥1=−1 = 1, 𝑛 · 𝑞|𝑥1=1 = −1, 𝑢2|𝑥1=0 = 0,∫︁∫︁
𝑆

𝑇𝑑𝑆 = 0,

∫︁∫︁
𝑆

𝑢1𝑑𝑆 = 0.

Такая постановка удобна тем, что позволяет качественно изучить поведе­
ние температурных напряжений без появления дополнительных напряже­
ний со стороны возможных концентраторов, обусловленных граничными
или геометрическими условиями.

x 1

R1

x 2

R2

θ

n
·q

=
1

n
·q

=
-

1

A

B

Рис. 6. Тепловые нагружения в области с эллиптическим вырезом

Здесь, аналогично задаче Кирша, максимальные значения компонен­
ты вектора плотности теплового потока 𝑞1 находятся в верхней и нижней
точках выреза и они подчиняются зависимости

𝑞max
1 = (1 + 𝜌)𝑞𝑜.

В нелокальном случае это значение уменьшается, но установить такую же
прочную связь, как и в случае с уравнением равновесия, не удаётся.
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Решения относительно напряжений обладают симметрией, причём
относительно верхней и нижней частей области решения чётные, а отно­
сительно правой и левой нечётные. Напряжения в нелокальном случае,
как и во всех предыдущих случаях, становятся ниже, чем в классическом
случае (Рис. 7).
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Рис. 7. Распределение напряжения 𝜎11 (a) и 𝜎22 (б) на кромке AB при

вариации весового параметра 𝑝1

Пятая глава посвящена исследованию эффективности реализации
программного комплекса NonLocFEM.

В разделе 5.1 проведено исследование масштабируемости алгоритмов
ассемблирования матриц теплопроводности и жёсткости (10). На Рис. 8
представлены столбцовые диаграммы эффективности ускорения на 18
ядерном процессоре Intel Core i9 10980XE при использовании технологии
OpenMP, где ускорение времени ассемблирования матриц в нелокальных
постановках достигает 14 раз при использовании всех ядер процессора.
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Рис. 8. Эффективность распараллеливания алгоритма сборки матриц

(а) теплопроводности и (б) жёсткости при использовании OpenMP

Также в этом разделе был изучен вопрос эффективности алгоритмов
балансировки данных между процессами при использовании технологии
MPI. Показано, что использование этого алгоритма даёт равномерное рас­
пределение данных между процессами.
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В разделе 5.2 проведено исследование скорости сходимости метода
сопряжённых градиентов при решении СЛАУ (7). Была поставлена зада­
ча равновесия на сетке 𝑆ℎ, состоящей из 1000× 100 элементов, после чего
была вычислена связь между параметром базиса 𝑠 и весовым параметром
модели 𝑝1 с числом обусловленности матрицы жёсткости (Рис. 9). Гра­
фики сходимости метода сопряжённых градиентов хорошо коррелируют
с графиками числа обусловленности, кроме того они демонстрируют кор­
ректность оценки, полученной в разделе 3.4, согласно которой минимум
числа обусловленности находится в окрестностях точки 𝑠 = 2/9.
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Рис. 9. Зависимость числа обусловленности (а) и количества итераций 𝑁

(б) для матрицы жёсткости ̂︀K𝐸 от параметров 𝑠 и 𝑝1 при 𝑟 = 0.1

В разделе 5.3 исследована возможность предобуславливания СЛАУ,
полученных в нелокальных задачах, при помощи неполного разложения
Холецкого локальной матрицы. Результаты показали, что ускорение сходи­
мости метода сопряжённых градиентов достигает 2.5 раз. При этом объём
затрачиваемой оперативной памяти, который занимает локальная матри­
ца, достаточно мал по сравнению с нелокальной матрицей, что делает
такой способ предобуславливания экономичным с точки зрения использо­
вания вычислительных ресурсов.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

1. Рассмотрена иерархия моделей нелокальной теплопроводности и
термоупругости, предложено и проанализировано два семейства возмож­
ных функций нелокального влияния, заданных на областях, ограниченных
кривыми Ламэ.

2. Разработан численный алгоритм решения интегро-дифференциаль­
ных уравнений на основе метода конечных элементов, проведена работа
над его оптимизацией и подготовкой к использованию в параллельной сре­
де вычислений.
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3. Разработан собственный программный комплекс NonLocFEM,
в рамках которого реализованы все предложенные алгоритмы; парал­
лельные реализации алгоритмов задействуют технологии параллельного
программирования OpenMP и MPI, все исследования и расчёты проведе­
ны в рамках программного комплекса.

4. Проведён качественный анализ сравнения классических теорий
теплопроводности и термоупругости с их нелокальными постановками, по­
лученные результаты свидетельствуют о снижении роли концентраторов
в распределениях полей напряжений и плотности теплового потока и в
возникновении кромочных эффектов на свободных от граничных условий
границах, а также определены основные зависимости отклонений нело­
кальных решений относительно классическим путём вариации параметров
модели.

5. Исследован вопрос сходимости итерационных методов решения
СЛАУ применительно к задачам в нелокальных постановках, предложе­
ны способы ускорения сходимости с применением альтернативных базисов
конечных элементов и предобуславливателей.
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