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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. По данным Всемирной 

организации здравоохранения до 7 % новорожденных имеет различную 

наследственную патологию; в России ежегодно рождается 30 тысяч детей с 

врожденными наследственными заболеваниями (Батышева Т. Т., 2015). 

Диагностика наследственных болезней основана на данных 

клинического осмотра, клинико-генеалогического анализа и результатах 

лабораторных исследований и традиционно выполняется по схеме «от 

фенотипа к генотипу» (Батышева Т. Т., 2015). При клиническом осмотре 

выявляют так называемые фенотипические признаки, к которым относятся 

врожденные пороки развития и малые аномалии развития, называемые 

врожденными морфогенетическими вариантами (ВМГВ). Единичные ВМГВ 

встречаются примерно у 15-20 % здоровых новорожденных и не влияют на 

последующее развитие ребенка. Между тем, наличие у ребенка более 5-ти 

ВМГВ является клиническим признаком, указывающим на высокую 

вероятность наличия наследственного заболевания (Мелешкина А. В., 2015). 

По результатам выявления и анализа фенотипических признаков и с учетом 

возраста, пола, семейного анамнеза формируются первичные гипотезы о 

наличии наследственного заболевания и осуществляется выбор схемы 

лабораторного исследования, по результатам которого ставится диагноз. 

При диагностике недостаточно описанных генетических заболеваний 

применяют схему «от генотипа к фенотипу», описанную, в частности, в 

(Wright C. F., 2018). В данной схеме анализ фенотипа служит цели 

интерпретации молекулярно-генетических исследований: после 

секвенирования происходит постепенное отсеивание генетических вариантов, 

потенциально ответственных за заболевание, путем сопоставления 

кодируемых ими признаков с наблюдаемыми у пациента фенотипическими 

признаками, вероятной наследственностью и наблюдаемыми клиническими 

проявлениями заболевания. В случае, если генетические варианты, 

объясняющие клинические проявления, найдены – говорят о надежном 

генетическом диагнозе. 

Обе диагностические схемы подразумевают необходимость анализа 

фенотипа пациента – выявления и описания отдельных фенотипических 

признаков. С учетом зачастую небольших отклонений строения органов, 

соответствующих ВМГВ, их высокой встречаемости и необходимостью 

подсчета числа ВМГВ, их оценка является наиболее сложным и субъективным 

исследованием, выполняемым в клинической генетике. 

По разным оценкам, до 40 % всех наследственных заболеваний 

сопровождаются множественными изменениями в строении черепно-лицевой 

области (Hart T. C., 2009); ее доступность для исследования, в том числе 

удаленного, а также значительный задел, имеющийся в сфере 

автоматизированного анализа изображений лица в разных задачах, приводит 

к практической важности и востребованности использования черепно-лицевой 

области для решения задач клинической генетики: скрининга наследственных 
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заболеваний и классификации тех из них, которые сопровождаются наличием 

ВМГВ лица. 

В научно-технической литературе представлены многочисленные 

результаты исследования фенотипа лица в задачах клинической генетики, 

показано, что количественные параметры, характеризующие фенотип лица и 

основанные на координатах антропометрических точек на его поверхности, 

являются информативными (Farkas L. G., 1994), хотя вопрос собственно 

диагностики наследственных заболеваний проработан не был. В подавляющем 

большинстве современных исследовательских работ для данных задач вместо 

геометрических признаков, отражающих параметры фенотипа, использованы 

нейросетевые (глубокие) и другие признаки, не имеющие непосредственной 

медицинской интерпретации, что не позволяет использовать накопленные в 

данной области знания о фенотипе и затрудняет клиническую интерпретацию 

получаемых результатов. Автоматизация и повышение достоверности 

результатов анализа фенотипических признаков, исследование 

целесообразности их использования наряду с признаками, основанными на 

машинном обучении, и создание соответствующих программно-

алгоритмических комплексов является актуальной задачей. 

Целью исследования является разработка и исследование метода 

автоматизированного выявления и анализа врожденных морфогенетических 

вариантов лица для решения задач клинической генетики. 

Для достижения поставленной цели в работе были сформулированы и 

решены следующие задачи: 

1. Разработка метода автоматизированной оценки ВМГВ лица по 

изображению. 

2. Исследование пространств признаков и информативности 

фенотипических параметров лица в задачах клинической генетики. 

3. Практическая реализация биотехнической системы (БТС) для 

автоматизированных исследований ВМГВ лица. 

4. Апробация разработанной БТС. 

Научная новизна работы: 

1. Показано, что суммирование абсолютных значений z-оценок 

фенотипических параметров лица детей, посчитанных с учетом возраст-

зависимых статистик их распределения, вместо традиционного подсчета числа 

выявленных ВМГВ, обеспечивает существенное повышение вероятностных 

характеристик при решении задач разделения «синдром / норма» как для 

отдельных синдромов, так и для их совокупности. 

2. Показано, что пространство фенотипических признаков HPO не 

является исчерпывающим. Совместное использование описанных в словаре 

HPO и не упоминаемых в нем количественных фенотипических параметров 

лица существенно повышает качество решение задачи разделения «синдром / 

норма» как при подсчете числа выявленных ВМГВ, так и при суммировании 

абсолютных значений z-оценок.  
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3. Установлено, что суммарные информативности геометрических и 

глубоких признаков, оцененные по значениям коэффициентов логистической 

регрессии, в задаче распознавания генетических заболеваний по изображению 

лица, имеют один порядок; их совместное использование приводит к 

существенному повышению устойчивости алгоритмов к неоднородности 

обучающей и тестовой выборок. 

Теоретическая и практическая значимость работы: 

1. Разработан метод автоматизированных исследований ВМГВ лица 

детей по 2D изображению, основанный на построении фенотипического 

портрета с использованием алгоритмов 3D реконструкции, принятии решения 

о предварительном отнесении пациента к группе риска на основе суммы 

модулей z-оценок фенотипических параметров, а также на использовании для 

распознавания генетических заболеваний комбинированных, геометрических 

и глубоких признаков. 

2. Обосновано совместное использование геометрических и глубоких 

признаков в задачах распознавания генетических заболеваний по 2D 

изображению лица детей; разработан, обучен и протестирован 

соответствующий алгоритм распознавания. Для извлечения глубоких 

признаков определена нейросетевая модель, карты активации которой 

наилучшим образом соответствуют решаемой задаче. 

3. Разработано программное обеспечение автоматизированного анализа 

фенотипа по изображению лица (Свидетельство о государственной 

регистрации программы для ЭВМ № 2020665602 от 27.11.2020). 

Основные положения, выносимые на защиту: 

1. Применение алгоритмов 3D реконструкции к 2D изображению лица 

детей возраста от 6 до 16 лет позволяет существенно повысить вероятность 

выявления ВМГВ. Для описанных в проекте FaceBase параметров средняя 

частота выявления ВМГВ без 3D реконструкции составила 94,2 % – для 22-х 

параметров, лежащих преимущественно во фронтальной плоскости, и 19,7 % 

– для остальных 10-ти параметров. При использовании 3D реконструкции 

данное значение составило 96,0 % по всем 32-м параметрам.  

2. Совместное использование геометрических и глубоких признаков 

изображения лица обеспечивает наибольшую точность распознавания 

генетического заболевания по сравнению с использованием каждого вида 

признаков по отдельности. При этом их информативность имеет один порядок 

и составляет для построенного и обученного на открытых базах данных 

алгоритма 0,45 и 0,55 соответственно. 

3. Геометрические признаки характеризуются большей устойчивостью к 

неоднородности обучающей и тестовой выборок в задачах классификации 

генетических заболеваний по изображению лица, чем глубокие, а применение 

геометрических признаков в комбинации с глубокими признаками 

существенно повышает устойчивость последних. Применение обученного на 

открытой базе синдромов алгоритма к изображениям тестовой выборки 
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привело к снижению точности на 18 % для геометрических признаков, на 26 

% – для глубоких признаков и на 15 % – для комбинированных. 

4. Для формирования групп риска по генетическим синдромам по 

результатам решения задачи бинарной классификации «синдром / норма» 

целесообразно суммировать абсолютные значения z-оценок фенотипических 

параметров вместно подсчета числа ВМГВ. По результатам тестирования на 

изображениях лица 355 пациентов со 115-ю синдромами и 80-ти индивидов 

контрольной группы показано, что специфичность при 80 %-й 

чувствительности повышается с 60 % до 69 %. 

Методы исследования. В работе использованы методы математической 

статистики, методы обработки и анализа данных, методы машинного 

обучения и распознавания образов, элементы теории биотехнических систем. 

Достоверность результатов основывается на использовании в работе 

основных положений теории биотехнических систем, методов 

математической статистики и других известных методов исследования. 

Полученные результаты не противоречат общепризнанным принципам и 

результатам исследований, опубликованным в работах отечественных и 

зарубежных авторов. 

Внедрение и использование. Результаты диссертационной работы 

использованы в лечебно-диагностической практике ООО «Геномед» в 

качестве дополнительного метода скрининга наследственных заболеваний у 

детей; использованы при выполнении с участием автора прикладных научных 

исследований в рамках Задания № 8.12871.2018/12.1 (2018-2020 гг.) и 

Госзадания МГТУ им. Н.Э. Баумана на 2023 г.; внедрены в учебный процесс 

кафедры «Биомедицинские технические системы» МГТУ им. Н.Э. Баумана. 

Апробация материалов диссертации. Основные положения и 

результаты работы обсуждались на конференциях: XIV «Russian-Germany 

Conference on Biomedical Engineering (RGC-2019)» (Санкт-Петербург, 2019); 

IX ВНТК «Проблемы метрологического обеспечения в здравоохранении и 

производстве медицинской техники» (Сочи, 2019 ); 26th IEEE Conference of 

Open Innovations Association FRUCT (Ярославль, 2020); 15th International Joint 

Conference on Biomedical Engineering Systems and Technologies – BIOSTEC-

2022 (онлайн, 2022); XII, XIII, XIV, XV МНТК «Физика и радиоэлектроника в 

медицине и экологии – ФРЭМЭ» (Владимир-Суздаль, 2016, 2018, 2020, 2022). 

Публикации. Основные результаты диссертационного исследования 

представлены в 11 научных работах, включая 2 статьи в рецензируемых 

журналах и изданиях из перечня ВАК РФ и 2 работы, индексируемые в Scopus. 

Общий объем 7,7 п.л. 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении показана актуальность диссертационного исследования, 

сформулирована цель и задачи работы, научная новизна и защищаемые 

положения, представлены общие сведения о работе. 
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В первой главе показано место исследований ВМГВ лица в диагностике 

генетических заболеваний. Рассмотрены подходы к автоматизации 

исследований фенотипа лица в клинической генетике. 

Схемы диагностики «от фенотипа к генотипу» и «от генотипа к 

фенотипу» предполагают решение двух типов задач, связанных с анализом 

фенотипа пациента в клинической генетике: выявление и описание отдельных 

фенотипических признаков и классификация генетических заболеваний по 

фенотипу с целью формирования предварительных гипотез. 

Всего существует около 16 тысяч описанных фенотипических 

признаков, перечень которых приведен в стандартизированном словаре 

фенотипических признаков Human Phenotype Ontology (HPO) (Robinson P. N., 

2008). Более одной тысячи из них относится к области лица. Хотя бы один 

фенотипический признак лица присутствует в более чем половине 

заболеваний, представленных в системе кодификации редких заболеваний 

Orphanet. 

Повышение достоверности результатов анализа фенотипа тесно связано 

с возможностью количественной оценки ВМГВ. В медицинской литературе 

выделяют альтернативные, описательные и измерительные ВМГВ. В 

последнем случае говорят об измерении фенотипического параметра, выход 

которого за диапазон ± 2 СКО от среднего значения свидетельствует о наличии 

соответствующего фенотипического признака – ВМГВ. 

Идея количественной оценки как измерительных, так и, по возможности, 

альтернативных и описательных ВМГВ лица, не нова. Так, исследовательской 

группой Л. Фаркаса (Farkas L.G., 1987, 1994, 2003) разработана система 

антропометрических измерений для оценки черепно-лицевой морфологии, 

нашедшая широкое применение в клинической генетике. Система основана на 

локализации антропометрических точек лица и головы, по которым 

осуществляется расчет 132 черепно-лицевых параметра и индексов, 

представляющих собой отношения различных параметров. Для параметров и 

индексов в ходе ручных промеров были установлены средние значения и СКО 

для нормы по европейской популяции в зависимости от пола и возраста. В 

научно-медицинской литературе была подтверждена информативность 

введенных группой Л. Фаркаса параметров для ряда синдромов, однако вопрос 

собственно диагностики наследственных заболеваний проработан не был. 

Кроме того, лишь небольшой набор введенных группой Л. Фаркаса 

фенотипических параметров лица и головы используется при определении 

признаков в словаре HPO, что говорит о возможной его неполноте.  

Ряд современных работ посвящен исследованию фенотипа лица с 

использованием 3D сканеров. Так, в проекте FaceBase, результаты которого 

представлены в открытом доступе (Hochheiser H., 2011), для людей 

европейской популяции с учетом пола и возраста (от 3 до 40 лет) получены 

средние значения и СКО 34 расстояний, 32 из которых лежат непосредственно 

в области лица. В ряде работ предпринимаются попытки построения 

алгоритма оценки ряда ВМГВ лица (Palmer R. L., 2020) и распознавания 

генетических заболеваний (Hallgrímsson B., 2020; Bannister J. J., 2022). В 
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целом, основным недостатком данного подхода является необходимость 

получения 3D скана с использованием дорогостоящего оборудования. 

Задача классификации генетических заболеваний по лицу без этапа 

предварительного выявления ВМГВ также нашла свое отражение в 

значительном количестве выполненных исследований разными научными 

коллективами. В большинстве из них в качестве входных данных используется 

2D изображение лица, по которому рассчитываются в разных комбинациях как 

геометрические и текстурные признаки с использованием классических 

подходов, так и глубокие признаки с использованием сверточных нейронных 

сетей различных конфигураций. Среди большинства работ, остающихся на 

уровне научных исследований, выделяется система Face2Gene (Gurovich Y., 

2019), реализованная в виде сайта и мобильного приложения, позволяющего с 

использованием алгоритмов глубокого обучения оценивать сходство 

загружаемой 2D фотографии пациента с более, чем 7 тысячами синдромов. В 

системе Face2Gene предпринята также попытка внедрения распознавания 

отдельных ВМГВ лица (Muers L., 2020), однако доступная информации об 

используемых для этой задачи методах и их точности – отсутствует. 

Недостатком системы Face2Gene, а также других похожих работ, является 

получение результата по принципу «черного ящика», без количественной 

оценки фенотипических параметров, которая позволила бы соотносить 

полученные решения с ВМГВ. 

Разработка методов и алгоритмов анализа изображений лица в задачах 

клинической генетики предполагает наличие баз данных, содержащих 

изображения пациентов. На сегодняшний день известна открытая база данных 

изображений лиц детей с генетическими заболеваниями, собранная научной 

группой кафедры физиологии, анатомии и генетики Оксфордского 

университета (Ferry Q., 2014). Полная база данных насчитывает 1573 

изображения лиц; в настоящей диссертационной работе использовалась 

подвыборка, включающая в общей сложности 1462 изображения лица 

пациентов с 8-ю синдромами: 204 – с синдромом Ангельмана, 194 – Апера, 246 

– Корнелии де Ланге, 190 – Дауна, 158 – Мартина-Белл (синдром ломкой X-

хромосомы), 101 – Тричера Коллинза, 227 – Вильямса, 142 – прогерия. В связи 

с отсутствием сведений о возрасте пациентов, который необходим для 

определения диапазона нормальных значений фенотипических параметров, 

при ее использовании применялись алгоритмы автоматического определения 

возраста (Toolpie). Для формирования контрольной группы использовались 

изображения из Дартмутской базы данных открытого доступа (Dalrymple K. 

A., 2013), содержащей изображения лиц здоровых детей: 40 девочек и 40 

мальчиков в возрасте от 6 до 16 лет.  

Вторая глава посвящена двум основным вопросам: разработке метода 

автоматизированной оценки ВМГВ лица и исследованию пространств 

признаков и информативности фенотипических параметров в задачах 

распознавания генетических заболеваний по изображению лица. 

Качество выявления измерительных ВМГВ зависит от точности 

определения соответствующих фенотипических параметров. Для ее оценки 
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при использовании 2D изображений был проведен вычислительный 

эксперимент, схема которого приведена на Рисунке 1. 

 
Рисунок 1. Схема вычислительного эксперимента 

Для исследования были отобраны 80 изображений лиц здоровых детей 

из Дартмутской базы данных открытого доступа (Dalrymple K. A., 2013) и 80 

изображений лиц детей с генетическими заболеваниями из открытой базы 

данных Оксфордского университета (Ferry Q., 2014): 40 девочек и 40 

мальчиков в возрасте от 6 до 16 лет – по 10 изображений каждого из 8-ми 

синдромов. 

Для каждого из 160 изображений была выполнена 3D реконструкция с 

помощью нейросетевых алгоритмов (Deep3DFaceReconstruction), результатом 

которой являлась 3D модель, по которой выполнялось определение 

действительных значений фенотипических параметров и, по выходу за 

диапазон ± 2 СКО от среднего значения, – ВМГВ. 

Далее выполнялось проецирование каждой модели на фронтальную 

плоскость с формированием 2D изображений лиц. Затем с использованием 

программной библиотеки Deep3DFaceReconstruction проводилось 

определение контрольных точек на 2D изображении лица с расчетом 32-х 

лицевых расстояний, описанных в проекте FaceBase (Hochheiser H., 2011). 

Одновременно с этим, по 2D изображениям выполнялась 3D реконструкция, 

также с определением 32-х расстояний, но уже с учетом третьей координаты. 

Для расстояний, полученных каждым из указанных способов, рассчитывались 

погрешности по сравнению с расстояниями в 3D модели. Полученные 

фенотипические параметры классифицировались как норма или один из двух 

вариантов ВМГВ: ниже нормы или выше нормы. Если полученный класс 

отличался от действительного, распознавание ВМГВ считалось ошибочным. 

В настоящей работе выполнена оценка допустимой погрешности 

определения расстояний из соображения, что ошибка ложноположительного 

отнесения пациента в группу риска по наследственным заболеваниям при 

принятии решения по результатам выявления не менее 6-ти ВМГВ из 32-х 
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должна увеличиться не более чем в два раза (с 0,0029 до 0,0058). В этом случае 

допустимая погрешность оценки отдельного фенотипического параметра 

составляет ± 0,5 от СКО его распределения в норме. 

По результатам вычислительного эксперимента показано, что при 

использовании 3D реконструкции, когда фенотипические параметры 

рассчитываются с учетом трех пространственных координат, из 5120 

параметров (32 параметра в 160 изображениях) только в 270-ти (5,3 %) 

погрешность оценки превысила допустимую; среднее отношение 

погрешности к СКО составило 0,184. При оценке 22-х фенотипических 

параметров, лежащих преимущественно во фронтальной плоскости, 

непосредственно по 2D изображению с использованием только двух 

пространственных координат, из 3520 параметров предложенный критерий не 

был выполнен для 243-х (6,9 %). Среднее отношение погрешности к СКО 

составило при этом 0,204. 

При прямом определении фенотипических параметров по 2D 

изображению для 13 параметров точность составляет не менее 95 %, еще для 

8 параметров – не менее 80 %. Средняя точность правильной классификации 

22-х параметров, лежащих преимущественно во фронтальной плоскости, 

составляет 94,2 %. Средняя точность правильной классификации 10 

параметров глубины – ожидаемо низкая и составляет 19,7 %. 

При использовании 3D реконструкции точность для всех 32 параметров 

превышает 80 %. При этом для 23 параметров она составляет 95 % и выше. 

Средняя точность правильной классификации с использованием 3D 

реконструкции составляет 96,0 %. 

Метод оценки ВМГВ лица был использован для оценки качества 

разделения групп в задачах «синдром / норма» без учета или с учетом 

реального отклонения фенотипического параметра от среднего для нормы 

значения, а также для оценки целесообразности использования 

дополнительных фенотипических параметров, кроме приведенных в HPO. Для 

исследования использовались открытые базы данных (Ferry Q., 2014) и 

(Dalrymple K. A., 2013). Пример результатов исследования для задачи 

разделения «синдром Вильямса / норма» приведен на рисунке 2. 

Показано, что суммирование абсолютных значений z-оценок 

фенотипических параметров вместо традиционного подсчета числа 

выявленных ВМГВ, обеспечивает повышение вероятностных характеристик 

при решении задач разделения «синдром / норма» как для отдельных 

синдромов, так и для их совокупности. Показано также, что использование 32-

х параметров демонстрирует лучшее разделение групп, чем только 13-ти из 

них, входящих в словарь HPO. Это указывает на целесообразность дополнения 

HPO новыми количественными параметрами фенотипа при решении 

подобных задач. 

В диссертационной работе проведено сравнительное исследование двух 

основных групп признаков, вычисляемых по 2D изображению лица: 

геометрических и глубоких. Исследование проводилось на открытой базе 

данных Оксфордского университета (Ferry Q., 2014). 
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а) б) 

  
в) г) 

Рисунок 2. Разделение «синдром Вильямса / норма»: 

а) и б) – подсчет числа выявленных ВМГВ по 13 и 32 параметрам;  

в) и г) – суммирование абсолютных значений z-оценок по 13 и 32 параметрам  

 

В качестве базовых геометрических признаков использованы 2D/3D 

координаты 68 контрольных точек лица, набор которых является стандартом 

де-факто для программных библиотек компьютерного зрения. При их 

определении использовалась 3D реконструкция лица 

(Deep3DFaceReconstruction), результатом которой являлась 3D модель, 

состоящая из 35709 точек, координаты которых также использовались в 

качестве варианта геометрических признаков. 

Для построения метода извлечения глубоких признаков проведены 

сравнительные исследования трех предобученных нейросетевых моделей: 

VGG16 (обученной на базе VGGFace), ResNet50 и SENet50 (обученных на базе 

VGGFace2), – которые были дообучены на открытой базе данных 

Оксфордского университета (Ferry Q., 2014). Точности классификации 

моделей по 8 синдромам приблизительно одинаковы и составили 0,90 ± 0,03, 

0,91 ± 0,03 и 0,89 ± 0,04 соответственно. 

Для выбора архитектуры нейронной сети, которая будет использоваться 

для извлечения глубоких признаков, было проведено исследование карт 

AUC = 

0,898±0,060 
AUC = 

0,943±0,043 

AUC = 

0,906±0,057 AUC = 

0,954±0,038 
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активации классов Grad-CAM, отражающих значимость вклада отдельных 

пикселей изображения в результат распознавания, для указанных трех 

нейросетевых моделей. Получены численные значения, характеризующие 

значимость верхней, средней и нижней трети лица, а также области лица в 

целом и области фона, при классификации изображений базы данных 

Оксфордского университета. Выбор сделан в пользу модели ResNet50, как 

показавшей более устойчивый характер распределения карт значимостей для 

отдельных синдромов и демонстрирующей больший вклад области лица по 

сравнению с фоном. В качестве вектора глубоких признаков модели ResNet50 

использовано 4096 выходных значений первого полносвязного слоя. 

Поскольку полученные вектора геометрических и глубоких признаков 

имеют большую размерность, было проведено исследование зависимости 

точности классификации 8-ми генетических заболеваний от метода снижения 

размерности, в качестве которого использовался метод главных компонент 

(PCA) с сохранением 95 % или 99 % вариации, а также последовательное 

применение PCA и линейного дискриминантного анализа (LDA). Для 

построения объединенного пространства комбинированных признаков после 

снижения размерности каждой группы признаков они объединялись в один 

вектор.  

В построенных пространствах признаков применялись следующие 

методы классификации: метод k-ближайших соседей, метод опорных векторов 

(с линейным и гауссовым ядром), случайный лес, линейный дискриминантный 

анализ, логистическая регрессия, наивный байесовский классификатор. 

Точность определялась в режиме 5-кратной кросс-валидации. 

Результаты тестирования для лучших комбинаций «первичные признаки 

/ метод снижения размерности / метод классификации» при использовании 

только геометрических, только глубоких, а также комбинированных 

признаков приведены в Таблице 1. Наибольшая точность классификации 

получена при использовании логистической регрессии в пространстве 

комбинированных признаков и составляет 96,6 %. 

Таблица 1. 

Лучшие результаты классификации 

Тип признаков Признаки 
Снижение 

размерности 

Метод 

классификации 
Точность 

Комбинированны

е 

3D координаты 

68 точек 
LDA 

Логистическая 

регрессия 
0,97±0,02 

4096 признаков 

ResNet50 

PCA (95 %) + 

LDA 

Глубокие 
4096 признаков 

ResNet50 

PCA (95 %) + 

LDA 

Логистическая 

регрессия 
0,96±0,02 

Геометрические 
3D координаты 

68 точек 
– LDA 0,90±0,03 

 

Для наилучшей комбинации выполнено сравнение информативности 

геометрических и глубоких признаков, входящих в общий вектор признаков. 

Поскольку в качестве метода классификации выбрана логистическая 
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регрессия, информативность признаков оценивалась через суммирование 

абсолютных значений коэффициентов логистической регрессии. Суммарные 

информативности геометрических и глубоких признаков в комбинации 

сопоставимы и составляют соответственно 0,45 и 0,55, что подчеркивает 

целесообразность их совместного использования. 

Проведено дополнительное исследование информативности других 

геометрических признаков: 32-х расстояний FaceBase и введенных 

Л. Фаркасом индексов, а также их z-оценок. С учетом разного набора 

доступных для расчета индексов для двух возрастных групп (61 индекс для 

группы от 1 до 5 лет и 41 индекс для группы от 6 до 16 лет), исследования 

проводились независимо в данных группах. Для второй возрастной группы в 

качестве 9-го класса были добавлены изображения здоровых детей 

Дартмутской базы данных. 

Среди геометрических признаков наибольшей точностью 

характеризуются 3D координаты 68 точек со снижением размерности методом 

LDA. Среди всех рассмотренных вариантов построения пространства 

признаков наилучшую точность по обеим возрастным группам показала 

комбинация, признанная лучшей в предыдущем исследовании (Таблица 1); 

точность при этом составила 97,4 % в каждой из возрастных групп.  

Для проверки возможности распознавания отдельных синдромов на 

открытом их множестве, с использованием лучшего алгоритма, определенного 

на предыдущем этапе, было обучено 8 бинарных классификаторов по схеме 

«синдром / другие 7 синдромов с контрольной группой». Для обучения и 

тестирования открытые базы данных были разделены в пропорции 4:1 

случайным образом. В таблице 2 приведены значения чувствительности и 

специфичности при принятии решения по максимуму оценки апостериорной 

вероятности (порог 0,5). 

Таблица 2. 

Метрики качества бинарной классификации на открытых базах данных 
Синдром Чувствительность Специфичность 

Ангельмана 0,93 0,99 

Апера 0,97 1,00 

Корнелии де Ланге 0,96 1,00 

Дауна 0,97 1,00 

Мартина-Белл 0,81 1,00 

Прогерия 1,00 1,00 

Тричера Коллинза 1,00 1,00 

Вильямса 0,96 1,00 

В третьей главе представлена разработанная БТС для 

автоматизированных исследований ВМГВ лица, которая включает 4 

подсистемы: биологическую, информационную, техническую и программную 

(Рисунок 3). Разработан макет аппаратно-программного комплекса для 

автоматизированных исследований ВМГВ лица. Разработано программное 

обеспечение, на которое получено регистрационное свидетельство. 
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Программная подсистема реализует описанные ранее алгоритмы, а 

также управляет процессом получения изображений. Регистрация 

изображений лица проводится врачом в контролируемых условиях лечебно-

профилактического учреждения для детей с рождения и осуществляется с 

помощью цифровой камеры. Захват изображения лица программно 

управляется блоком захвата изображения. Дополнительно изображение лица 

проходит проверку фронтальности. На полученном изображении выполняется 

обнаружение области лица и выравнивание изображения лица в блоке 

предобработки изображения.  

 

 
Рисунок 3. Структурно-функциональная схема БТС для автоматизированных 

исследований ВМГВ лица 

 

Блоки 3D реконструкции лица и выделения геометрических признаков 

выполняют оценку 3D координат 68 контрольных точек лица. Одновременно 

с этим проводится выделение глубоких признаков. В блоке классификации 

осуществляется снижение размерности признаков и собственно 

классификация с использованием обученных ранее моделей логистической 

регрессии. 

Координаты контрольных точек дополнительно используются в блоке 

оценки фенотипических признаков для расчета 32-х фенотипических 
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параметров лица и выявления на их основе ВМГВ лица с учетом данных о 

распределении параметров в норме в зависимости от пола и возраста. 

В целом, результатом работы программного обеспечения является 

фенотипический портрет лица, а также решение о предварительном отнесении 

пациента к группе риска на основе суммы модулей z-оценок фенотипических 

параметров, а также по результатам оценки вероятностей для 8-ми 

генетических заболеваний, по которым имелась достаточная обучающая 

выборка. 

Четвертая глава посвящена исследованию показателей эффективности 

применения БТС для автоматизированных исследований ВМГВ лица. 

Апробация проводилась на выборке изображений лиц из фотоархива 

пациентов медико-генетического центра ДГКБ им. Н.Ф. Филатова 

(заведующий центром – В.Г. Солониченко). Выборка включает 717 

фронтальных изображений лица пациентов, имеющих в общей сложности 160 

синдромов. Для проведения исследований были сформированы две 

подвыборки: тестовая подвыборка 1 включает 355 изображений 115 

синдромов (дети старше 3-х лет). Тестовая подвыборка 2 содержит 79 

изображений 7 синдромов, присутствующих в ранее использованной базе 

открытого доступа (за исключением синдрома Дауна). Наибольшим числом 

пациентов представлены синдромы Вильямса (35) и Корнелии де Ланге (26). 

В качестве примеров нормы использованы изображения Дартмутской базы 

данных. 

На Рисунке 4 приведены ROC-кривые для задач разделения «синдром 

Вильямса / норма», «синдром Корнелии де Ланге / норма» и «тестовая 

подвыборка 1 / норма». 

  

 
Рисунок 4. ROC-кривые, суммирование абсолютных значений z-оценок  

32-х параметров 

В ходе апробации была подтверждена целесообразность суммирования 

абсолютных значений z-оценок для формирования групп риска по 

генетическим синдромам. В частности, показано, что суммирование 

абсолютных значений z-оценок фенотипических параметров вместо подсчета 

числа выявленных ВМГВ приводит к увеличению специфичности в задаче 

разделения «тестовая подвыборка 1 / норма» с 60 % до 69 % при 80 %-й 

чувствительности. Аналогичные результаты продемонстрированы и в задачах 

«синдром Вильямса / норма» и «синдром Корнелии де Ланге / норма». 
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Проведено исследование устойчивости результатов классификации при 

применении алгоритмов, обученных на открытых базах данных, к тестовой 

подвыборке 2. Так как тестовая подвыборка не содержала изображений с 

синдромом Дауна, в данном исследовании алгоритмы были переобучены на 

открытых базах данных также для 8-классовой задачи, в которой вместо 

синдрома Дауна был представлен класс нормы (Дартмутская база данных).  

В Таблице 3 приведены значения точности при использовании лучших 

вариантов геометрических, глубоких и комбинированных признаков. В 

качестве точности для открытых баз данных приведены значения, полученные 

в режиме 5-кратной кросс-валидации для 1-го ранга. 

Таблица 3. 

Точности классификации при обучении на открытой базе данных 

Признаки 
Открытая БД 

(r = 1) 

Тестовая подвыборка 2 

r = 1 r = 2 

Геометрические 0,91 0,73 ± 0,09 0,86 ± 0,07 

Глубокие 0,96 0,70 ± 0,09 0,83 ± 0,08 

Комбинированные 0,96 0,81 ± 0,08 0,97 ± 0,03 

 

Применение обученного на открытых базах синдромов алгоритма к 

изображениям тестовой подвыборки привело к снижению точности (для 1-го 

ранга) на 18 % для геометрических признаков, на 26 % – для глубоких 

признаков и на 15 % – для комбинированных. Результаты показывают, что 

геометрические признаки характеризуются большей устойчивостью к 

неоднородности обучающей и тестовой выборок в рассматриваемых задачах, 

а их применение в комбинации с глубокими признаками существенно 

повышает устойчивость последних. 

Обученные на открытых базах данных бинарные классификаторы для 

распознавания отдельных синдромов на открытом их множестве применены 

ко всей выборке изображений лиц ДГКБ им. Н.Ф. Филатова, насчитывающей 

717 изображений 160 синдромов. Значения чувствительности и 

специфичности для синдромов с наибольшим числом изображений в тестовой 

подвыборке составили соответственно 51 % и 93 % для синдрома Вильямса и 

23 % и 99 % для синдрома Корнелии де Ланге при принятии решения с 

порогом 0,5. При снижении порога принятия решения о наличии заболевания 

до 0,2 данные значения составляют соответственно 71 % и 89 % для синдрома 

Вильямса и 35 % и 98 % для синдрома Корнелии де Ланге. Полученный 

результат коррелирует с более частой встречаемости фенотипических 

признаков лица при синдроме Вильямса по сравнению с синдромом Корнелии 

де Ланге. 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ 

1. Разработана БТС для автоматизированных исследований ВМГВ 

лица, обеспечивающая решение основных задач анализа фенотипа лица в 

клинической генетике: оценку фенотипических параметров и ВМГВ лица без 

необходимости 3D сканирования лица, принятие решения о предварительном 
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отнесении пациента к группе риска на основе суммы модулей z-оценок 

фенотипических параметров, а также распознавание генетических 

заболеваний по которым имеется обучающая выборка с использованием 

комбинированных геометрических и глубоких признаков изображения. 

2. Установлено, что применение алгоритмов 3D реконструкции к 2D 

изображениям лица детей в возрасте от 6 до 16 лет обеспечивает возможность 

выявления ВМГВ для составления фенотипического портрета по 32-м 

фенотипическим параметрам, по которым имеются данные о вероятностных 

распределениях в норме, со средней вероятностью 96,0 %. 

3. Установлено, что для формирования групп риска по генетическим 

синдромам по результатам анализа фенотипа пациента по лицу, целесообразно 

суммировать абсолютные значения z-оценок фенотипических параметров, 

вместо подсчета числа выявленных ВМГВ. 

4. Проведено сравнительное исследование трех нейросетевых моделей: 

VGG16, ResNet50 и SENet50 и показано, что карты активации классов Grad-

CAM модели ResNet50 наилучшим образом соответствуют задаче 

распознавания генетических заболеваний по изображению лица. 

5. Обоснована целесообразность использования комбинации 

геометрических и глубоких признаков лица в задаче распознавания 

генетических синдромов. Показано, что подобная комбинация является более 

устойчивой при применении алгоритма распознавания к базе данных, не 

участвовавшей в обучении алгоритма, чем каждый вид признаков по-

отдельности. 

6. Предложенные и разработанные методы и алгоритмы 

автоматизированной оценки ВМГВ лица и распознавания генетических 

заболеваний по изображению лица, реализованы в программном обеспечении, 

на которое получено свидетельство о регистрации. 

7. Практическое применение разработанной БТС позволит 

существенно дополнить имеющуюся в научно-медицинской литературе 

информацию о ВГМВ лица в норме и при наличии генетических заболеваний, 

повысить достоверность результатов анализа фенотипа лица в клинической 

генетике и создать систему поддержки принятия решений врача-генетика в 

задачах диагностики как по схеме «от фенотипа к генотипу», так и «от 

генотипа к фенотипу». 
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