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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Моделирование термомеханического
состояния тепловыделяющего элемента (твэла) в энергетических
реакторах является актуальной и важной задачей. Одной из главных
частей твэла является столб из топливных таблеток (их количество
обычно составляет несколько сотен), заключенный в цилиндрическую
оболочку.

При детальном моделировании работы твэла, вообще говоря,
необходимо учитывать следующие термомеханические процессы:
термоупругое расширение таблеток и оболочки, ползучесть таблеток
и оболочки, пластическое деформирование оболочки, распухание и
радиационное доспекание таблеток, радиационный рост оболочки,
выделение газообразных и летучих продуктов деления под оболочку
твэла, растрескивание и фрагментация таблеток, перестройка
структуры топлива, молекулярная, контактная, излучательная
проводимость газового зазора, механическое взаимодействие
топливного столба с оболочкой, повреждаемость и трещиностойкость
материала оболочки в условиях коррозии, теплоотдача на наружной
поверхности твэла и другие.

Из-за геометрических размеров твэла и многочисленности
физических явлений, которые нужно учитывать, полноценное
моделирование с использованием стандартных математических
пакетов представляется затруднительным. Решение контактной
задачи и построение эффективного алгоритма выбора длины шага по
времени с учетом реалистичных законов ползучести являются одними
из ключевых моментов при создании программного комплекса для
полноценного моделирования твэла. В частности, при решении
контактной задачи возникают трудности, связанные с наличием в
расчетной области большого количества тел, причем конфигурация
контактных поверхностей существенно меняется в ходе расчета.

Целью работы является разработка и применение
математических моделей, алгоритмов и программных средств
для моделирования контактного взаимодействия тел в условиях
высокоинтенсивного термомеханического нагружения применительно
к тепловыделяющему элементу ядерного реактора.
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Для достижения поставленной цели потребовалось решение
следующих основных задач.

1. Анализ математических моделей, описывающих
термомеханические процессы в тепловыделяющем элементе.

2. Построение численных алгоритмов решения контактных задач.
3. Разработка программного комплекса для математического

моделирования контактного взаимодействия системы тел в двумерной
и осесимметричной постановках с учетом ползучести.

4. Математическое моделирование напряженно-деформированного
состояния системы контактирующих тел при термомеханическом
нагружении.

Методы исследования. При решении задач, возникших в ходе
выполнения диссертационной работы, использовались различные
методы математического моделирования и вычислительной
математики: метод конечных элементов, mortar-метод,
модифицированные итерационные методы решения систем
линейных уравнений, методы решения задач математической физики,
вычислительный эксперимент.

Достоверность и обоснованность полученных результатов
гарантируется строгостью используемого математического аппарата
и подтверждается сравнением результатов расчетов с известными
аналитическими решениями тестовых задач.

Научная новизна. В диссертации получены следующие новые
научные результаты.

1. Построены алгоритмы численного решения мультиконтактных
задач на основе mortar-метода в двумерной и осесимметричной
постановках. На их основе построен вычислительный алгоритм для
моделирования термомеханических процессов в тепловыделяющем
элементе на всем временном интервале его эксплуатации с учетом
процессов ползучести.

2. Предложены обобщенные на случай контакта многих тел
алгоритмы на основе модифицированных итерационных методов
решения систем линейных уравнений, позволяющие автоматически
учитывать изменяющуюся конфигурацию контактных поверхностей.

3. Создан программный комплекс для моделирования
напряженно-деформированного состояния системы контактирующих
тел, имеющий модульную структуру, благодаря которой его можно
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расширять, включая новые модули, описывающие новые эффекты.
Теоретическая и практическая значимость диссертационной

работы состоит в развитии методов численного исследования
решений контактных задач теории термоупругости с учетом
процессов ползучести, что необходимо для моделирования
термомеханических процессов, протекающих в тепловыделяющем
элементе.

В результате выполнения диссертационной работы разработан и
зарегистрирован программный комплекс, позволяющий моделировать
участок твэла, в который могут входить от одной до нескольких
десятков топливных таблеток, в осесимметричном термоупругом
приближении с учетом процесса ползучести.

Проведено сопоставление данных вычислительного эксперимента
с известными аналитическими решениями, подтвердившее
корректность разработанных алгоритмов.

Положения, выносимые на защиту
1. Математическая модель тепловыделяющего элемента,

учитывающая явления термоупругости и ползучести на всем
временном этапе его эксплуатации и ориентированная на применение
mortar-метода.

2. Вычислительные алгоритмы решения мультиконтактных
задач с учетом ползучести на основе mortar-метода, позволяющие
учитывать выход из контакта участков контактной поверхности без
дополнительного вмешательства в решение задачи.

3. Программный комплекс для математического моделирования
напряженно-деформированного состояния системы контактирующих
тел в двумерной и осесимметричной постановках с учетом
ползучести, позволяющий моделировать основные качественные
и количественные характеристики тепловыделяющего элемента,
содержащего до 100 топливных таблеток, в выбранном приближении.

Апробация результатов работы. Результаты диссертационной
работы докладывались на следующих конференциях: Международная
научная конференция «Современные проблемы вычислительной
математики и математической физики» (Москва, 2019), XVII
International Seminar Mathematical models and modeling in laser plasma
process and advanced science technologies (LPpM3-2019) (Черногория,
Петровац, 2019), Международная конференция «Актуальные
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проблемы математической физики», посвященная 95-летию
профессора А. Г. Свешникова и 80-летию профессора В. Ф. Бутузова
(Москва, 2019), Всероссийская конференция с международным
участием «Теория управления и математическое моделирование»
(Ижевск, 2020), 11-я Всероссийская конференция «Необратимые
процессы в природе и технике» (Москва, 2021), 27-я Всероссийская
конференция с участием зарубежных ученых по численным методам
решения задач теории упругости и пластичности, посвященная
100-летию Н. Н. Яненко (Красноярск, 2021), Международная
инновационная конференция молодых ученых и студентов по
современным проблемам машиноведения МИКМУС-2021 (Москва,
2021; награжден почетным дипломом), а также на семинаре в
Институте прикладной математики им. М.В. Келдыша РАН (2022).

Публикации. Основные результаты диссертационной работы
отражены в 10 печатных работах, в том числе в 2 статьях в
изданиях, индексируемых в международных базах данных и системах
цитирования Scopus и Web of Science.

Работы 2018 – 2020 годов поддержаны грантами
Российского фонда фундаментальных исследований (проекты
РФФИ № 18-01-00252 и № 18-31-20020).

Личный вклад соискателя. Все исследования, изложенные
в диссертационной работе, проведены лично соискателем в процессе
научной деятельности. Из совместных публикаций в диссертацию
включен лишь материал, который непосредственно принадлежит
соискателю, заимствованный материал обозначен в работе ссылками.

Структура и объем работы. Диссертационная работа состоит
из введения, трех глав, заключения и списка литературы. Работа
изложена на 136 страницах, содержит 70 иллюстраций и 17 таблиц.
Список литературы включает 107 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении приведен обзор литературы по теме исследования,
обоснована актуальность темы, сформулированы цель и задачи
исследования, основные положения, выносимые на защиту, приведены
данные о структуре и объеме диссертационной работы.

В первой главе приведены математические модели, описывающие
некоторые происходящие в тепловыделяющем элементе процессы.
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Приведены математические формулировки начально-краевой задачи
для нелинейного уравнения теплопроводности и задачи механики
деформируемого твердого тела, а также дан обзор реалистичных
математических моделей происходящих в твэле процессов, среди
которых выделен ряд эффектов, представляющих наибольший
интерес (тепловая задача, контактная задача, развитие деформаций
ползучести).

Ограничимся решением следующей задачи, моделирующей
термомеханические процессы, проходящие в твэле (Рис. 1,а):
внутри цилиндрической оболочки 𝐺𝑁 расположен столб из 𝑁 − 1
поставленных друг на друга одинаковых цилиндрических таблеток
𝐺1, . . . , 𝐺𝑁−1, имеющих внутреннее отверстие и фаски на обоих
торцах (Рис. 1,б).

(а)

S1

S2

S2

S3

S4

S5

S6

G1

GN-1

GN

r

z

(б)
Рис. 1. а — схема устройства твэла; б — схема контактного
взаимодействия нескольких тел

Предположим, что эффектом связанности можно пренебречь,
поэтому задачу теплопроводности будем решать отдельно, а
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полученное температурное поле использовать при решении
контактной задачи термомеханики. Для моделирования тепловых
процессов использовано нелинейное уравнение теплопроводности
с заданной в топливных таблетках объемной мощностью
тепловыделения, а также со следующим граничным условием:
между внутренней поверхностью оболочки и внешней поверхностью
таблеток осуществляется теплообмен с заданным коэффициентом
теплоотдачи.

Математическая формулировка задачи механики деформируемого
твердого тела для случая, когда объемные силы отсутствуют, включает
в себя следующие соотношения для каждого тела с номером 𝛼
(𝑖, 𝑗 = 1, 3):

- уравнения равновесия

𝜎𝑗𝑖,𝑗(u, 𝑡) = 0, x ∈ 𝐺𝛼, 𝑡 > 0,

- кинематические граничные условия

u(x, 𝑡) = u0(x, 𝑡), x ∈ 𝑆𝐷, 𝑡 > 0,

- силовые граничные условия

𝜎𝑗𝑖(u, 𝑡)𝑛𝑗 = 𝑝𝑖(x, 𝑡), 𝑥 ∈ 𝑆𝑁 , 𝑡 > 0,

- соотношения Коши для линейного тензора полной деформации

𝜀𝑖𝑗(x, 𝑡) =
1

2
(𝑢𝑖,𝑗(x, 𝑡) + 𝑢𝑗,𝑖(x), 𝑡), x ∈ 𝐺𝛼, 𝑡 > 0,

- определяющие уравнения (закон Гука)

𝜎𝑖𝑗(x, 𝑡) = 𝐶𝑖𝑗𝑘𝑙

(︀
𝜀𝑘𝑙(x, 𝑡) − 𝜀0𝑘𝑙(x, 𝑡)

)︀
, x ∈ 𝐺𝛼, 𝑡 > 0,

где 𝑥𝑖 — координаты вектора 𝑥 ∈ 𝐺𝛼; 𝜎𝑖𝑗 — компоненты тензора
напряжений; 𝜀𝑘𝑙 — компоненты тензора деформации; 𝜀0𝑘𝑙 —
компоненты тензора неупругой деформации; 𝑢𝑖 — компоненты
вектора перемещения; 𝐶𝑖𝑗𝑘𝑙 — компоненты тензора упругих
постоянных; 𝑝𝑖 — компоненты вектора поверхностных сил; 𝑛𝑗 —
компоненты вектора внешней нормали; 𝑢𝛼𝑖

𝑛 — проекции векторов
перемещений граничных точек на направление внешней нормали 𝑛
к границе тела 𝛼𝑖; 𝜎𝛼𝑖

𝑛 — проекции векторов напряжений на
направление внешней нормали 𝑛 к границе тела 𝛼𝑖.
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В настоящей работе моделирование поведения участка твэла на
всем временном интервале его эксплуатации ограничивается рядом
эффектов (тепловая задача, контактная задача, развитие деформаций
ползучести). Тогда выражение для производной тензора деформации
𝜀̇0𝑖𝑗 примет вид:

𝜀̇0𝑖𝑗 = 𝜀̇𝑇𝑖𝑗 + 𝜀̇𝑐𝑖𝑗 .

Для термоупругого тела температурные деформации записываются
следующим образом:

𝜀𝑇𝑖𝑗 = 𝛼𝑇
𝑖𝑗∆𝑇,

где 𝛼𝑇
𝑖𝑗 — компоненты тензора коэффициентов температурной

деформации, ∆𝑇 = 𝑇 (x, 𝑡) − 𝑇0 — приращение температуры
относительно уровня температуры, при которой имеют место нулевые
деформации.

Для моделирования процесса ползучести в данной работе будем
использовать теорию течения, в которой предполагается, что при
заданной температуре между напряжением, скоростью деформации
ползучести и временем существует определенная зависимость.
Деформации ползучести вычисляются в соответствии с теорией
течения:

𝜀̇𝑐𝑖𝑗 = 𝜆𝜎′
𝑖𝑗 .

Рассмотрим пару потенциально контактных поверхностей,
относящихся к телам с номерами 𝛼1 и 𝛼2. Для упрощения записи
будем использовать индекс «1» вместо «𝛼1» и «2» вместо «𝛼2». Тогда
дополнительные условия на поверхности 𝑆1

𝑘 для случая контакта без
трения выглядят следующим образом (для поверхности 𝑆2

𝑘 условия
записываются аналогичным образом):

𝜎1
𝜏 (x1) = 0; (1)

𝜎1
𝑛(x1) = 𝜎2

𝑛(x̄2) 6 0; (2)

𝑢1𝑛(x1) + 𝑢2𝑛(x̄2) 6 𝛿0𝑛(x1); (3)

𝜎1
𝑛(x1)

(︀
u1
𝑛(x1) + u2

𝑛(x̄2) − 𝛿0𝑛(x1)
)︀

= 0. (4)

Здесь x1 — некоторая точка, лежащая на поверхности 𝑆1
𝑘 , а

x̄2 — сходственная точка, т.е. находящаяся напротив точки x1 на
поверхности 𝑆2

𝑘 , 𝛿0𝑛(x1) > 0 — функция, задающая начальный зазор
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(участки поверхности в начальный момент могли не соприкасаться
друг с другом), 𝑢𝑖𝑛 = u𝑖·n𝑖, 𝜎𝑖

𝜏 =
(︀
𝜎
(︀
u𝑖
)︀
· n𝑖

)︀
·𝜏 𝑖,𝜎𝑖

𝑛 =
(︀
𝜎
(︀
u𝑖
)︀
· n𝑖

)︀
·n𝑖.

Условия (1) – (4) гарантируют, что если на некотором участке
𝑆12
𝑘 поверхности 𝑆1

𝑘 и 𝑆2
𝑘 будут совпадать (заранее конфигурация и

положение этого участка неизвестны), то при этом на контактирующие
участки будут действовать сжимающие контактные силы.

В модели учтено, что каждая таблетка (кроме нижней и
верхней) вступает в контакт с двумя соседними (сверху и снизу)
таблетками и оболочкой (считается, что начального зазора между
ними нет). Таким образом, всего насчитывается 𝑁 − 2 контактных
пар таблетка/таблетка и 𝑁 − 1 контактных пар таблетка/оболочка.
На контактных поверхностях поставлены условия скольжения без
трения. Можно отметить следующие характерные особенности
рассмотренной мультиконтактной задачи. Для каждой контактной
пары таблетка/таблетка в результате нагрева происходит выход из
контакта значительного количества узлов сетки, расположенных
ближе к фаске. Из-за большой протяженности конструкции вдоль
оси 𝑧 топливные таблетки, особенно в верхней части столба,
смещаются на значительное расстояние относительно своего
начального положения (и относительно оболочки).

Для описания реалистичных теплофизических характеристик
материалов использованы модели из библиотеки MATPRO.
(Hagrman D. L. MATPRO, 1993).

Для рассмотренной задачи не существует аналитического
решения, поэтому необходимо использовать численные методы.
В работе будем использовать метод конечных элементов, для
этого перейдем от исходной дифференциальной постановки к
слабой (или вариационной). Переход к слабой постановке можно
осуществлять различными способами. Приведем способ, основанный
на рассмотрении энергии системы из 𝑁 деформируемых тел, которая
в момент времени 𝑡𝑚 выглядит следующим образом:

Π(𝑡𝑚) = Π𝛼(𝑡𝑚) + Π𝑐(𝑡𝑚), (5)

где

Π𝛼 =
1

2

∫︁
𝐺𝛼

𝜎𝑖𝑗𝜀
𝑒
𝑖𝑗 𝑑𝐺−

∫︁
𝑆𝛼𝑁

𝑢𝑖𝑝𝑖 𝑑𝑆,
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а Π𝑐 отвечает за вклад в потенциальную энергию распределенных
контактных сил, которые действуют на поверхностях контактирующих
тел, его конкретный вид зависит от используемого метода. Для метода
множителей Лагранжа Π𝑐 записывается следующим образом:

Π𝑐 =

∫︁
𝑆𝑘

(𝜆𝑛(x, 𝑡𝑚)𝑔𝑛(x, 𝑡𝑚) + 𝜆𝜏 (x, 𝑡𝑚)𝑔𝜏 (x, 𝑡𝑚)) 𝑑𝑆, (6)

где 𝑔𝑛 = (u2 − u1) · n, 𝑔𝜏 = (u2 − u1) · 𝜏 — функции зазора.

Во второй главе предложены методы численного решения
мультиконтактных задач теории термоупругости с учетом ползучести.
Учет контактного взаимодействия осуществлен с помощью
mortar-метода, который является одним из вариантов метода
множителей Лагранжа для несогласованных поверхностных сеток.
Для пространственной дискретизации задачи использован метод
конечных элементов, в расчетах применены элементы второго
порядка на четырехугольной сетке. Для численного решения
задачи развития деформаций ползучести предложены алгоритмы
решения систем обыкновенных дифференциальных уравнений на
основе явного и неявного методов Эйлера. Произведено обобщение
модифицированных итерационных методов решения систем
линейных алгебраических уравнений, на случай контакта нескольких
тел.

Mortar-метод решения контактных задач теории упругости
предполагает независимую конечно-элементную дискретизацию
непересекающихся подобластей. Сетки на этих подобластях
являются, вообще говоря, несогласованными на линии контакта,
а непрерывность решения достигается за счет использования
множителей Лагранжа. Среди основных преимуществ mortar-метода
можно отметить возможность независимого выбора различных
типов конечных элементов и функций формы как на границах
контактирующих тел, так и при интегрировании вдоль линии
контакта.

Поскольку конфигурация контактных поверхностей заранее не
известна, она определяется в ходе итерационного процесса, в котором
на 𝑙-й итерации решается следующая система линейных уравнений,
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возникающая при минимизации функционала (5):(︂
A M𝑙

M𝑘𝑇 0

)︂{︂
u𝑙

𝜆𝑙

}︂
=

{︂
R
0

}︂
. (7)

Для системы из 𝑁 тел, в которой есть 𝑞 пар контактных
поверхностей, матрицы и векторы в (7) имеют следующую структуру:

A = diag(A11, . . . ,ANN),

M𝑙 = (M1, . . . ,MN)𝑇 ,

Ml
i =

(︀
Ml

i1, . . . ,M
l
iq

)︀𝑇
,

R = (R1, . . . ,RN)𝑇 ,

u =
(︀
u1 . . . uN

)︀𝑇
,

𝜆 =
(︀
𝜆1 𝜆2 . . . 𝜆𝑞−1 𝜆𝑞

)︀𝑇
,

где Aii — матрица жесткости для 𝑖-го тела, Ri — вектор правой части
для 𝑖-го тела, матрица Ml

i имеет размерность 𝑛𝑖 × 𝑚𝑙, а матрица
M𝑙 — размерность 𝑛×𝑚𝑙 (может меняться на 𝑙-й итерации), где 𝑚𝑙 —
размерность вектора 𝜆 на 𝑙-й итерации, 𝜆𝑖 — вектор множителей
Лагранжа для 𝑖-й пары контактных поверхностей.

Блочная система уравнений (7) соответствует задаче с седловой
точкой. В матрице есть нулевой блок на диагонали, поэтому для
ее решения нельзя использовать большую часть классических
итерационных методов решения систем линейных уравнений (методы
Якоби, Гаусса — Зейделя, SOR, сопряженных градиентов). В работе
для численного решения (7) использованы различные итерационные
методы: модифицированные итерационные методы, такие как
модифицированный метод Якоби (MJOR), модифицированный метод
последовательной верхней релаксации (MSOR), модифицированный
метод симметричной последовательной верхней релаксации (MSSOR),
метод Узавы, а также обобщенный метод минимальных невязок
(GMRES). Также использованы два итерационных процесса для двух
способов учета интеграла по контактной поверхности, в которых на
каждой итерации глобальная система уравнений решается с помощью
метода Гаусса.

Для учета интеграла по контактной поверхности в (6)
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использовано два способа. В первом из них считается, что в
интеграл всегда входят все узлы сетки, лежащие на рассматриваемых
потенциально контактных поверхностях. Этот подход применен
для модифицированных итерационных методов и метода Узавы
и позволяет учитывать изменение конфигурации контактной
поверхности без дополнительного вмешательства в алгоритм. Во
втором способе в конце каждой итерации необходимо корректировать
список узлов, относящихся к контактным поверхностям. Этот
подход применен для метода Гаусса, а также обобщенного метода
минимальных невязок.

Так как напряжения зависят от деформаций ползучести,
соотношения для производной тензора деформации ползучести по
времени в различных конечных элементах можно представить в виде
системы обыкновенных дифференциальных уравнений

𝜀𝑐 = f(𝜀𝑐, 𝑡),

для решения которой в работе применены явный и неявный метод
Эйлера. Для неявного метода Эйлера решение нелинейной системы
уравнений на каждом шаге по времени осуществлено либо с помощью
метода простой итерации, либо с помощью метода Ньютона.

В третьей главе приведены результаты численного решения
серии мультиконтактных задач теории термоупругости с учетом
ползучести с помощью разработанного программного комплекса.
Отмечено, что программный комплекс позволяет моделировать
основные качественные и количественные характеристики твэла,
содержащего до 100 топливных таблеток, в выбранном приближении.

Разработанный программный комплекс для численного
моделирования напряженно-деформированного состояния системы
тел зарегистрирован в федеральной службе по интеллектуальной
собственности.

Для верификации программы решен ряд задач с контактом
колонны из 𝑁 прямоугольных брусков (их количество варьировалось
от 1 до 100), поставленных друг на друга. К верхнему бруску
приложена постоянная нагрузка 𝑃𝑦 = 10 МПа. Для этой задачи
известно аналитическое решение: 𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 0, 𝜎𝑦𝑦 = −𝑃𝑦.
Данная серия задач решена на разных сетках как с помощью
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модифицированных итерационных методов, так и с помощью метода
Гаусса. Также решена задача о контакте двух толстостенных труб,
нагруженных внутренним давлением со степенным законом для
скорости ползучести материала 𝜀̇и = Ω𝜎𝑛

и . Сравнение показало, что
численные значения напряжений стремятся к точным значениям при
уменьшении шага сетки.

Представим результаты серии расчетов для участка твэла,
включающего от 2 до 100 топливных таблеток. На наружной
поверхности оболочки задано постоянное давление 𝑝1=10 МПа,
а на верхней поверхности верхней таблетки — постоянное
давление 𝑝2=50 МПа. В проведенных расчетах полагалось, что
𝑇0 = 300 K, температура всей оболочки является постоянной
(𝑇𝑓 = 623 K), объемная мощность тепловыделения отлична от
нуля только в таблетках. Будем рассматривать несогласованные
сетки: таблетки разбиты на 10 элементов в направлениях 𝑟 и 𝑧,
а оболочка — на 5 элементов в направлении 𝑟, в направлении 𝑧
каждый участок оболочки, соответствующий высоте одной таблетки,
разбит на 10 элементов. В качестве предобуславливателей для
модифицированных итерационных методов выбраны следующие

матрицы: Bi =
𝑁∑︀
𝑗=1

Mji
𝑇 diag {A−1

jj }Mji. При использовании

единичного предобуславливателя сходимость не достигается.

Таблица 1.
Количество итераций и время расчета

Метод/
кол-во таблеток

10
12500 пер.

50
62500 пер.

100
125000 пер.

MJOR 133 (34,1 с) 509 (140,4 с) 859 (254,6 с)
метод Узавы 861 (88,0 с) 1587 (286,6 с) 1960 (463,7 с)

GMRES 54 (58,3 с) 344 (3460,5 с) 903 (32318,4 с)
метод Гаусса 54 (180,7 с) 344 (36756,4 с) —

В Табл. 1 приведено количество итераций, требуемых для
достижения точности 𝜀 = 5 · 10−5 (MJOR и метод Узавы) или
для получения итоговой конфигурации контактных поверхностей
(метод Гаусса и GMRES). В скобках указано время расчета для
различных методов и для разного количества таблеток (от 1 до
100). В первой строке Табл. 1 указано приблизительное количество
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переменных при решении системы уравнений для соответствующего
количества таблеток. Из приведенных данных видно, что для
большого числа таблеток минимальное время расчета достигается
при использовании модифицированного метода Якоби (например,
для 50 таблеток различие в 25 раз по сравнению с GMRES и в 262
раза по сравнению с методом Гаусса). Для реализации метода Гаусса
и GMRES использованы процедуры для разреженных матриц из
библиотеки Eigen (https://eigen.tuxfamily.org). В дальнейших расчетах
с ползучестью использовался модифицированный метод Якоби
(MJOR).

Среднее время использования твэла в реакторе составляет
несколько лет, поэтому в расчетах с ползучестью выберем время
расчета 𝑡𝑒𝑛𝑑 = 3, 2 · 108 c (10 лет). Для минимизации времени расчета
применен алгоритм автоматического выбора длины шага, основанный
на сравнении оценки локальной погрешности, полученной с
помощью правила Рунге, и заданной величины точности 𝑡𝑜𝑙. В
Табл. 2 представлено общее время расчета и количество шагов по
времени для различного количества таблеток и значений 𝑡𝑜𝑙. При
уменьшении 𝑡𝑜𝑙 максимальные шаги уменьшаются, при этом общее
время расчета увеличивается незначительно. При использовании
переменного шага резко уменьшается количество итераций по
времени, а время расчетов уменьшается в 10–15 раз по сравнению с
расчетами с постоянным шагом.

Таблица 2.
Общее время расчета и количество шагов по времени

Макс. длина шага, 𝑡𝑜𝑙
Кол-во таблеток Мин. длина шага

10−5 10−6

1 табл.
91,4 c

16000 шагов
14,8 с

37 шагов
19,0 с

45 шагов

10 табл.
10126,7 c

213333 шагов
1056,7 с
244 шага

1841,1 с
441 шаг

100 табл. —
34526,4 с

2607 шагов
60071,2 с
4524 шага

На Рис. 2 представлены графики зависимостей средних значений
радиальных напряжений на внешней поверхности топливных таблеток
для случая 100 таблеток (одна точка соответствует одной таблетке) в
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различные моменты времени. Из приведенных графиков видно, что
напряжения в таблетках уменьшаются с течением времени. Таким
образом, учет деформаций ползучести приводит к заметному (в 5–
10 раз) уменьшению значений напряжений в конструкции.

(а) (б)
Рис. 2. Зависимости средних значений радиального напряжения 𝜎𝑟(𝑧)
при 𝑟 = 0, 0038 м: а — постоянная мощность тепловыделения; б —
синусоидальная мощность тепловыделения

(а) (б) (в) (г)
Рис. 3. Двумерные распределения в узлах элементов для момента
времени 𝑡 = 3, 2 · 108 с: а — интенсивности напряжений в таблетках;
б — интенсивности напряжений в оболочке, в — интенсивности
деформаций ползучести в таблетках; г — интенсивности деформаций
ползучести в оболочке

14



На Рис. 3 показаны двумерные распределения интенсивности
напряжений и интенсивности деформаций ползучести для случая 100
таблеток. Показаны фрагменты распределений, соответствующие 6-й
и 7-й таблеткам, при этом при построении деформированных тел
приложенные перемещения для большей наглядности увеличены в 10
раз для таблеток и в 50 раз для оболочки.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

1. Построена математическая модель термомеханических
процессов, протекающих при работе тепловыделяющего элемента
(твэла) на всем временном интервале его эксплуатации. Модель
учитывает перенос тепла, термоупругость, ползучесть и реальные
термомеханические характеристики материалов, мультиконтактные
взаимодействия в системе, включающей в себя до сотен тел, с
большими перемещениями контактирующих поверхностей.

2. Построены численные алгоритмы решения мультиконтактных
задач с учетом термоупругости и ползучести на основе метода
конечных элементов в варианте mortar-метода. Алгоритмы используют
разработанные модифицированные итерационные методы решения
систем уравнений и позволяют учитывать выход из контакта участков
контактной поверхности без дополнительного вмешательства в
решение задачи.

3. Разработан программный комплекс для численного
моделирования напряженно-деформированного состояния системы
контактирующих термоупругих тел в двумерной и осесимметричной
постановках с учетом ползучести. Комплекс позволяет моделировать
основные качественные и количественные характеристики
тепловыделяющего элемента, содержащего до 100 топливных
таблеток, в выбранном приближении.

4. С помощью созданного комплекса программ выполнено
моделирование термомеханического состояния тепловыделяющего
элемента в энергетических реакторах. Результаты моделирования
показали, в частности, что учет деформации ползучести приводит
к уменьшению значений напряжений в ряде критических мест на
порядок.
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