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                                  ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность работы. 

Проблема объективной оценки текущего состояния безопасности 

эксплуатации промышленных строительных конструкций (тепловых станций, 

цехов, котельных и т.п.) в настоящее время выходит на первое место в связи с 

массовой многократной выработкой их расчетного ресурса, трудностями 

остановки эксплуатации и большой стоимости их полной замены.  

В настоящее время для расчета оценки надежности конструкций и 

прогноза времени их безаварийной эксплуатации применяются 

преимущественно методы планового обследования, основанные на экспертных 

оценках. 

Плановые обследования проводятся периодически в соответствии с 

установленными сроками в эксплуатационной документации (в т.ч. экспертизы 

промышленной безопасности), например, через 3 или 5 лет. В промежутке между 

обследований ведется контроль только со стороны служб эксплуатации при этом 

сроки обследований не меняются.  

Методы применяемые при обследовании основаны на качественной 

оценке узлов и элементов, достоверность результатов зависит от квалификации, 

знаний и опыта эксперта. Это снижает объективность и достоверность 

результатов, снижает число анализируемых параметров, не позволяет 

определять надежность эксплуатации по текущему состоянию. 

В последнее время в России и за рубежом большое и активное развитие 

получили методы прогноза состояния объектов на основе нейронных сетей.  

В связи с этим представляется перспективным, используя математический 

аппарат нейронных сетей, разработать технологию прогнозирования ресурса 

эксплуатации опасных промышленных строительных объектов.  

При этом в качестве исходных данных для обучения и дообучения 

нейронных сетей в процессе эксплуатации использовать как результаты 

технического диагностирования, которое уже проводится, так и современные 

методы и аппаратуру объективной диагностики и долговременного мониторинга 

характеристик конструкций. 

Задача оценки безопасности эксплуатации промышленных строительных 

конструкций может быть решена методами искусственного интеллекта с 

корреляционным приближением, что не требует существенного сбора большого 

количества данных в процессе измерений.  

Необходимо отметить, что в соответствии с новыми поправками в 

федеральный закона о промышленной безопасности опасно производственных 

объектов предусматривается принятие решения по продлению дальнейшей 

эксплуатации промышленных строительных конструкций отнести к 

компетенции руководства эксплуатируемых организаций без привлечения 

сторонних экспертов.  
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Это приводит к необходимости принятия решения о дальнейшей 

безопасной эксплуатации конструкций руководством эксплуатируемых 

организаций на основе методов прогнозирования с использованием входных 

данных, как виде экспертных оценок, так и на основе данных технического 

диагностирования.  

Сказанное выше обуславливает актуальность данной диссертационной 

работы. 

Большой вклад в решение задач прогнозирования безопасной 

эксплуатации конструкций на опасных производственных объектах внесли 

ученые Н.П. Алешин, В.В. Клюев, В.В. Болотин, Э.С. Горкунов, Н.А. Махутов и 

др. 

Проблемы применения искусственного интеллекта на основе 

искусственных нейронных сетей для расчета ресурса конструкций в реальных 

условиях эксплуатации рассмотрены в работах ученых, например: М. Майера, 

Н.Ф. Хоциалова, А.М. Половко, А.Ф. Тузовского, С. Б. Пугачева, В.С 

Ивановского, В.Д. Дарищева, В,И. Каштанова, А.Р. Сабиров, С .Г. Пекин, М.М. 

Волобуев, А.Н. Терпелюк и др.  

В целях повышения безопасности эксплуатации конструкций, прежде 

всего, может быть получено на основании всеобъемлющего сбора и обработки 

информации о технических и технологических параметрах работы каждой части 

конструкций и сооружений. 

Перспективным направлением развития теории безопасности и ресурса 

сложных конструкций является метод анализа рисков с помощью свёрточных 

нейронных сетей. Применяемые в настоящее время, как в РФ, так и за рубежом 

методы оценки риска носят качественный характер, основываются на 

использовании экспертных оценок и направлены на оценку вероятности 

возникновения аварийной ситуации и возможных ее последствий. 

Таким образом, комплексное решение вопросов создания, на базе методов 

искусственного интеллекта, системы прогнозирования безопасности сложных 

конструкций со статистической обработкой информации, учитывающей 

специфику оценки технического состояния конструкций - актуальная научно-

техническая проблема, имеющая важное народно-хозяйственное значение. 

Научно-техническая проблема, решаемая в диссертационной работе: 

обеспечение безопасной эксплуатации потенциально опасных конструкций по 

текущему фактическому состоянию на основе экспертных оценок, современных 

методов.  

Объектом исследования являются металлические и железобетонные 

строительные конструкции. 

Цель работы – снижение рисков возникновения аварийной ситуации при 

эксплуатации строительных конструкций путем прогнозирования сроков 

безопасной эксплуатации строительных конструкций на основе комплексных 

входных данных (экспертные оценки, методы диагностирования) и методов 

прогнозирования на основе искусственных нейронных сетей. 
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В работе решались следующие основные задачи: 

1. Анализ существующих методов прогнозирования и оценки 

эксплуатационной безопасности и прогнозирования остаточного ресурса 

конструкций. 

2. Разработка математической модели оценки возможности безопасной 

эксплуатации с использованием автоматизированного, многокритериального 

комплексирования информации неразрушающего контроля на основе систем 

искусственного интеллекта. 

3. Обоснование критериев для системы искусственного интеллекта при 

решении задачи оценки эксплуатационной безопасности с применением 

автоматизированного многокритериального комплексного неразрушающего 

контроля. 

4. Создание метода оценки эксплуатационной безопасности сложных 

конструкций в цеховых и полигонных условиях на основе диагностических 

данных с использованием глубинных нейронных сетей типа рекуррентный 

автоэнкодер. 

5. Разработка программных средств автоматизированной оценки 

эксплуатационной безопасности конструкций. 

Методы исследования. При решении поставленных задач использовались 

вероятностно-статистические методы, методы диагностики и неразрушающего 

контроля конструкций, методы теории надежности, предельных состояний, 

математического прогнозирования, нейронных сетей и нечёткой логики. 

Научная новизна работы: 

1. Разработана методология оценки технического состояния 

строительных конструкций на опасных производственных объектах с учетом 

изменяющееся характеристики дефектов (размер, форма, глубина залегания, 

положение дефекта) при природно-климатических воздействиях (ветровые 

нагрузки, снеговые нагрузки, температурные колебания, вибрационные 

воздействия и т.д.) с использованием методов прогнозирования на основе 

искусственных нейронных сетей. 

2. Обоснованы критерии эксплуатационной безопасности 

конструкций, выявляемых при проведении комплексного, автоматизированного 

неразрушающего контроля. Доминирующими параметрами являются параметры 

дефектов, выявленных при проведении технического диагностирования. 

3. Установлены взаимосвязи между внешними факторами и 

изменением характеристик дефектов, выявленных при техническом 

диагностировании оказывающие воздействие на несущую способность 

конструкции (предельные величины усилий, нагрузок и деформаций) с 

использованием нейросетевой модели. 

Положения, выносимые на защиту: 

1. Методология оценки и прогнозирования технического состояния 

строительных конструкций в процессе эксплуатации с использованием методов 

прогнозирования на основе искусственных нейронных сетей.   
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2. Алгоритмы по установлению взаимосвязи между внешними 

факторами, влияющими на несущую способность конструкции, условиями 

эксплуатации и изменениями характеристик дефектов элементов выявленных в 

процессе технического диагностирования.  

3. Модель прогноза безопасной эксплуатации конструкций на основе 

глубинной нейронной сети с выбором критических причин дефектов и 

адаптивной реакцией к внешним воздействиям. 

Теоретическая значимость исследования: Показано, что задача 

прогноза безопасной эксплуатации конструкции с достаточной для практики 

точностью может быть решена с ограниченным набором данных, имея 

непротиворечащую базу знаний. Учитывая, что точность прогноза возможности 

дальнейшей эксплуатации конструкций здания в значительной степени зависит 

от характеристик состояния отдельных элементов конструкций, было 

установлено, что комплексирование информации позволяет повысить 

достоверность прогноза. 

Значение полученных результатов исследования для практики 

подтверждается тем, что: 

1. На основе полученных результатов разработан и внедрен в 

промышленную эксплуатацию программных комплексов «Спектра» и «GScan», 

применение которых позволила прогнозировать безопасную эксплуатацию 

конструкций в среднесрочной перспективе. 

2. Проведена апробация программного комплекса прогнозирования 

безопасности сооружений при эксплуатации в реальных условиях. 

3. Даны методические рекомендации по совершенствованию и 

модернизации средств оценки и прогнозированию безопасной эксплуатации 

промышленных объектов. 

Обоснованность и достоверность научных положений и основных 

выводов, представленные в диссертации, подтверждаются использованием 

современных теоретических и экспериментальных методов исследования, 

сопоставлением результатов, полученных с исследованиями других авторов и 

действующих нормативных документов. 

Личный вклад автора состоит в проведении анализа существующих 

математических методов прогнозирования; разработке модели прогнозирования 

безопасной эксплуатации строительных конструкций с применением методов 

искусственного интеллекта. 

Реализация результатов. Созданные математический аппарат и 

рассчетно-теоретические модели прогнозирования безопасной эксплуатации 

конструкций, а также разработанные на их основе принципы построения, 

алгоритмы обработки комплексированной информации и практические 

рекомендации по разработке глубинных нейронных сетей (ГНС), были широко 

использованы для решения различных важных и актуальных научно-

технических задач на многих крупных предприятиях России: 
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при оценки технического состояния строительных конструкций при 

проведении экспертизы промышленной безопасности на объектах ПАО «ГМК 

«Норильский Никель» г. Норильск; 

при оценки технического состояния строительных конструкций на опасно 

производственных объектов АО «ГалоПолимер» г. Пермь; 

при оценки технического состояния строительных конструкций на опасно 

производственных объектов ООО «Лукойл-Пермь» г. Пермь; 

при оценки глубины поверхностных трещин в силовых элементах 

конструкций с использованием GScan на производственном объединении 

“Стройстарт”, г. Пенза; 

Апробация работы. Основные положения диссертационной работы 

докладывались на всероссийских научно-технических и научно-практических 

конференциях: 

VIII Международная научно-практическая конференция «Приоритеты и 

научное обеспечение технологического прогресса» 10 октября 2016, Москва, 

Научно-издательский центр «Аэтерна» 

Международная научно-практическая конференция Новая наука: история 

становления, современное состояние, перспективы развития 3 октября 2016, 

Москва, Омега (Международный центр инновационных исследований) 

Международная научно-практическая конференция «Естественные и 

математические науки: от вопросов к решениям» г. Томск 15 октября 2016, 

Evansys (Federal center of science and education) 

International Scientific Conference SCIENCE.RESEARCH.PRACTICE. 

Санкт-Петербург, 24 октября 2016 

Научная конференция ВУНЦ ВВС «ВВА имени профессора Н.Е. 

Жуковского и Ю.А. Гагарина» (г. Воронеж) 17 ноября 2016 

X Международная конференция, Москва 18 декабря 2016. 

Международная научно-практическая конференция «Новшества в области 

технических наук», Москва 15 января 2017. 

Международная научно-практическая конференция «Новшества в области 

технических наук», Москва 15 января 2017. 

Публикации. По материалам диссертационной работы опубликовано 

двадцать семь научных работ, в том числе, двенадцать – в научных 

рецензируемых изданиях, рекомендуемых ВАК РФ. 

Структура диссертации. Диссертация состоит из четырех глав, 

заключения и списка литературы. 

СОДЕРЖАНИЕ РАБОТЫ 

В первой главе проведен анализ применяемых в настоящее время методов 

неразрушающего контроля при проведении обследования строительных 

конструкций. Установлено, что в соответствии с требованиями нормативно 

технической документации основными методами при контроле строительных 

http://isociety.science-publish.ru/index_files/index.html
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конструкций являются визуально-измерительный, ультразвуковой и тепловой 

методы неразрушающего контроля. В процессе эксплуатации конструкций, под 

действием внешних факторов ее узлы приобретают структурные изменения. 

Деформации и старение приводят к тому, что показатели, характеризующие 

безопасность объекта, постепенно приближаются к предельно допустимым 

значениям, выход за которые означает потерю прочностных свойств.   

Параметры безопасной эксплуатации, материалы и сроки безаварийной 

эксплуатации строительных конструкций закладываются на стадии 

проектирования.  

Количественные методы оценки безопасности и ресурса конструкций, 

базирующиеся на оценке надежности и вероятности безаварийной работы, не 

имеют еще широкого распространения в практических работах, но имеют 

большой потенциал развития в связи с распространением применения методов 

искусственного интеллекта. Отсутствие статистических данных, сложность 

вероятностных расчётов и отсутствие чётких методик приводит к тому, что 

количественные методы применяют редко.  

В работе оценены существующие математические методы 

прогнозирования остаточного ресурса (корреляционный и регрессионный 

анализ; метод группового учета аргументов; факторный анализ; теория 

распознавания образов; машинное обучение; байесовские сети; метод опорных 

векторов).  

Установлено, что повышение уровня надежности и эффективности 

конструкций возможно лишь при использовании компьютерных технологий, в 

частности, интеллектуальных информационно-измерительных систем для 

анализа и обработки полученных данных по результатам технического 

диагностирования и применения мониторинговых систем. 

Широкая область применения искусственных нейронных сетей 

подтверждается достаточно большим количеством публикаций. Отдельно 

хотелось отметить работы: Чигринец Е.Г., Верченко А.В. OMW-технологии и 

нейросетевые алгоритмы анализа данных на предприятиях авиационной 

отрасли; Каменев А.С., Королев С.Ю., Сокотущенко В.Н. Нейромоделирование 

как инструмент интеллектуализации энергоинформационных сетей. 

           Одной из проблемой обработки полученных данных является сложность 

при обработки входных параметров разнородной информации для контроля и 

измерения характеристик надежности эксплуатации конструкций. Данная 

проблема в настоящее время решается с помощью комплексирования 

разнородной информации. Приведение входных сведений к единому формату 

информации необходим для корректной работы создаваемой нейронной сети 

(НС). 

При определении времени безопасной работы конструкции необходимо 

установить закономерности влияющие на параметры надежности конструкций. 

Данные закономерности будут использованы при процессе обучения НС. 

Данные закономерности могут быть установлены экспертами или быть 
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получены при анализе статистических данных и данных анализа аварий и 

инцидентов при эксплуатации строительных конструкций.  

Использование полученных закономерностей позволяет прогнозировать 

остаточный ресурс конструкций, своевременно проводить планирование 

планово-предупредительных ремонтов и других организационно-технических 

мероприятий, способствующих повышению эксплуатационной надежности 

конструкций. 

Проведен анализ методов оценки разнородной информации с целью 

получения максимальной достоверности результатов при прогнозировании 

безопасности конструкций.  
Отмечено, что методы и алгоритмы обработки баз данных 

ограничиваются, как правило, построением трендов, вычислением средних 

значений измеряемых величин и сигнализацией о выходе параметров за 

допустимые пределы. Применяемые в настоящее время в составе 

информационно-измерительных систем первичные измерительные устройства 

не обладают достаточной точностью и надежностью, особенно в условиях 

неопределенности. В недостаточной степени используются современные методы 

обработки баз данных информационно-измерительных систем, в частности 

методы математической статистики, распознавания образов, нечеткой логики, 

теоретико-игровые методы, методы теории детерминированного хаоса и пр., 

успешно используемые в других отраслях производства. 
Проведен анализ применяемых в настоящее время методов 

неразрушающего контроля и систем мониторинга для выявления дефектов в 

строительных конструкциях, эксплуатируемых на промышленных объектах. 

Определено, что в настоящее время при продлении сроков дальнейшей 

эксплуатации не в полной мере оцениваются влияние внешних воздействий на 

строительную конструкцию. На основании проведенного анализа причин аварий 

и инцидентов на опасных производственных объектах сделан вывод о 

значительном влиянии внешних факторов на возможность дальнейшего 

эксплуатации строительных конструкций.  

Во второй главе проведено исследование вероятностных математических 

моделей определения остаточного ресурса с применением НС.  

Применение НС обеспечивает: 

1) способность к обобщению разнородных данных влияющих на состояние 

несущей способности конструкции. Под термином «обобщение» понимается 

способность НС устанавливать остаточный ресурс на основе данных, не 

встречающихся в процессе обучения; 

2) нелинейность. Нейронная сеть, построенная из соединений нелинейных 

нейронов, является нелинейной. Нелинейность является чрезвычайно важным 

свойством, поскольку входной сигнал, подаваемый в НС, в случае определения 

остаточного ресурса является нелинейным; 

3) отображение входной информации в выходную. Наиболее часто 

используется для обучения НС глубинного типа. Настройка синаптических весов 
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сети происходит на основе набора учебных примеров (факторов возникновения 

аварий, потери несущей способности). Каждый пример состоит из параметров 

входного сигнала и соответствующего ему желаемого отклика. Из этого 

множества случайным образом выбирается пример, а НС модифицирует 

синаптические веса для минимизации расхождений желаемого выходного 

сигнала и формируемого сетью согласно выбранному статистическому 

критерию. Обучение проводится до тех пор, пока изменения синаптических 

весов не станут незначительными. Данное свойство позволяет проводить 

настройку НС по факторам или совокупности факторов несущих наибольшую 

опасность для эксплуатации строительных конструкций; 

4) адаптивность. Нейронные сети обладают способностью адаптировать 

свои синаптические веса к изменениям входных сигналов. В частности, 

нейронные сети, обученные действовать с определенными сигналами, могут 

быть легко переучены для работы в условиях незначительных колебаний 

параметров; 

5) эксплуатацию обученной НС не требует дополнительной подготовки 

пользователей и их высокой квалификации. 

Кроме этого, нейросетевой метод моделирования не требует априорного 

задания вида исследуемой зависимости. 

Задача определения остаточного ресурса по данным измерений может 

быть сформулирована как задача аппроксимации функции многих переменных. 

Данные переменные являются входными параметрами для построения 

нейронной сети. Переменные включают в себя данные полученные при 

проведении технического диагностирования, в процессе эксплуатации 

(превышение параметров, изменение среды, динамические нагрузки) и 

внешними факторами. Необходимо построить некоторое отображение H→Y 

такое, чтобы на каждый возможный входной образ, представленный вектором 

измерений (H) формировался правильный выходной вектор остаточного ресурса 

(Y). 

С помощью проведенного анализа НС, с точки зрения решения задачи 

определения остаточного ресурса, доказана возможность использования метода 

НС для решения задачи автоматизации построения функциональной 

зависимости между входными параметрами и остаточным ресурсом. 

Нейронная сеть для определения ресурса конструкции может быть 

представлена как совокупность простых данных о конструкции (нейронов), 

связанных друг с другом. Нейрон состоит из нескольких входов и одного выхода, 

сумматора и блока функции определяющих влияние на остальные нейроны. 

Функционально нейрон умножает входные импульсы на некоторые 

коэффициенты (степень влияния на несущую способность конструкции), 

суммирует полученные произведения и преобразует сумму в соответствии с 

активационной функцией, являющейся пороговой или сигмоидальной. 

Математически функцию нейрона можно описать следующим образом: 
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где W – весовые коэффициенты; 

H – входные значения;  

F – функция активации. 
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Рис. 1. Структура трехслойной нейронной сети, используемая для 

определения несущей способности конструкции 

Для решения задачи установления остаточного ресурса по спектральным 

данным предложена многослойная нейронная сеть прямого распространения 

(Рис. 1): 

1-й слой состоит из значений h1, h2, …, hn – входные параметры по 

техническому диагностированию и дефектах, инцидентах в процессе 

эксплуатации; 

2-й слой является промежуточным слоем, для повышения точности 

установления функциональной зависимости между входными параметрами и 

несущей способностью конструкции. При данном слое добавляются значения по 

текущему состоянию конструкции: внешние факторы, текущие 

эксплуатационные значения и показатели мониторинговых систем; 

3-й слой состоит из значения y – несущая способность, определяемой из 

спектра, 
yY

 . 

Обучение НС основано на обучении, заключающееся в том, что каждому 

входному набору данных h1, h2, …, hn определяется степень влияния на другие 

данные и степень влияния на несущую способность конструкции. 

(1) 
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Обучение определено как поиск коэффициентов и параметров нейронной 

сети, при которых будет выполняться необходимое отображение входного 

вектора H значений спектра поглощения в выходное Y – значение концентрации. 

Это достигается путем минимизации суммы разности квадратов между 

желаемыми выходами и получаемыми НС [3] 

( )( )
2

,

1
, min

2

M N

j i i j

i j

E y d= − → W H

, 

где di,j – желаемый выход j-го выходного нейрона для i-го обучающего 

примера; 

W – матрица весовых коэффициентов НС, коэффициенты одного нейрона 

представлены строкой матрицы Hi – i-й обучающий пример. 

На основе анализа различных параметров сети (конструкции) (вид 

нейронов, количество слоев и связей, типы сетей), выполненного в целях 

оптимальной НС для решения задачи определения несущей способности 

конструкции по данным спектра, предлагается пошаговый алгоритм редукции 

сети с учетом конкуренции связей нейронов между собой. 

Шаг 1. Задание исходных значений для каждого элемента (нейрона). 

Основывается на внесении дефектов найденных в процессе комплексного 

технического диагностирования, сведений о параметров конструкции, 

эксплуатационные дефекты (сведенья о авариях и инцидентов, сведенья о 

параметрах эксплуатации с АСУ ТП). 

Шаг 2. Ввод значений возбуждающих весовых коэффициентов – степень 

связи, с которой i-й нейрон связан с j-м нейроном следующего слоя. Данные 

значения могут обуславливаться внешними факторами: ветровые и снеговые 

нагрузки, скорость ветра, влияние вечной мерзлоты, среда эксплуатации и 

данные мониторинговых систем. 

Шаг 3. Вычисление значений каждого нейрона по формуле 
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где Si – сумма произведений всех возбуждающих весов i-го нейрона на 

значение соответствующего этому весу j-го нейрона следующего слоя;  

gj – величина j-го элемента следующего слоя;  

K=1 – коэффициент, который используется для обновления значений 

нейронов предыдущего слоя;  

i – принимает значение от 0 до n; n – количество нейронов предыдущего 

слоя;  

j – принимает значение от 0 до m; m – количество элементов 

следующего слоя НС. 

Шаг 4. Обновление значений возбуждающих весов  

(2) 

(3) 

(4) 
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где 

1

,

l

i jW   – значения возбуждающих весов предыдущей итерации. 

 

Шаг 5. Если 

1

, 0,001
l

i jW  , то 

1

, 0
l

i jW = . Таким образом происходит 

сокращение количества конкурируемых между собой нейронов. 

Шаг 6. Вычисление обновленных значений по формуле (1). 

Шаг 7. Исследование значений нейронов на противоречие в конкуренции 

,
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где , ,
'

pr pr

i k i k i kx xW W= − 
 – обновление значения ,

in

i kW ;  

,'
pr

i kW  – значение ,

pr

i kW  на предыдущей итерации;  

i kx x 
 – разница значений xi и xk на двух итерациях. 

Шаг 8. Вычисление новых значения нейронов с учетом учета 

противоречия в конкуренции 

i

i

i
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K I
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+
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Шаг 9. Если значения нейронов не превышают установленного порога, то 

изменение весов у нейронов прекращают. Иначе, продолжается изменение весов 

и пересчет значений (переход к шагу 4). 

Алгоритм является итерационным. Он используется для установления 

наиболее конкурентных связей в НС для определения влияний на несущую 

способность конструкцию. 

При условии недостаточности диагностических данных рассматривается 

прогнозирование по измерениям нагрузок используется при недостаточности 

доступа к конструкциям для диагностики технического состояния. В этом случаи 

несущая способность конструкции будет определяться следующим образом: 

𝜑̆𝑘(𝑟) + ∫ 𝐸{𝑓2[𝑞(𝜏)|𝑟]}𝑑𝑟 = 1
𝑡𝑘+Ѳ

𝑡𝑘
  ,   (8) 

Плотность вероятности имеет вид: 

𝑝𝑟(𝑟|𝑇𝑘) = 𝑝𝑟(𝑟) [∫ 𝑝𝑟(𝑟)𝑑𝑟
𝐷𝑘(𝑟)

]
−1

 ,   (9) 

где Dk – область значений вектора r, при которых выполнено условие 

𝜑̆𝑘(𝑟) < 1 , означающее, что к моменту tk ресурс не выработан. 

Прогнозирование на основе марковских моделей, где прогноз процесса 

v(t|Tk) зависит только от последнего состояния системы vk в момент времени tk. 

Уравнение для условной функции надежности P(t|Tk) имеет вид: 

(5) 

(6) 
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𝜕𝑃

𝜕𝑡
= ∑ 𝜑𝑗(𝜈𝑘)

𝜕𝑃

𝜕𝑡
+

1

2
∑ ∑ 𝜑𝑗𝑙(𝜈𝑘)𝑛

𝑙=1
𝑛
𝑗=1

𝑛
𝑗=1

𝜕2𝑃

𝜕𝜈𝑗𝑘𝜕𝜈𝑙𝑘
,   (10) 

где 𝜈𝑗𝑘 – составляющие вектора 𝜈 = 𝜈 (𝑡𝑘);  

𝜑𝑗  и 𝜑𝑗𝑘  –коэффициент сноса и коэффициент диффузии (интенсивности 

процесса).  

При заданном состоянии 𝜈𝑘 ∈ 𝛺 начальное условие берется 𝑃(𝑡𝑘|𝑇𝑘) = 1. 
Прогнозирование наступления предельных значений по критерию роста 

трещин, основано на теории механики разрушения материалов, включая 

характеристики усталостной и хрупкой прочности. Суть такого подхода 

заключается в том, что функция долговечности представляет собой функцию от 

числа циклов нагрузки до разрушения. Статистическую информацию получают 

на основе исследования однотипных элементов конструкций, работающих в 

идентичных условиях эксплуатации. В этом случае используют приближенные 

значения числовых характеристик функции распределения по результатам 

испытаний серий образцов материалов конструкций, находящихся в условиях 

приближенных к эксплуатационным. 

Отмечено, что наступление предельных состояний первой группы ведут к 

потере несущей способности, а следовательно, к полной непригодности и 

эксплуатации конструкций, и как следствие, всей конструкции в целом. 

Наступление второй группы предельных состояний ведет к временному 

ограничению эксплуатации конструкции. Основными причинами является 

потеря устойчивости элементов, возникновение трещин, приложение случайных 

нагрузок с высокой интенсивностью и частотой повторяемости, воздействие 

внешних факторов (температура, внешняя среда, скорость ветра). Для 

определения вероятности разрушения конструкций вводят две функции: 

функция надежности L(N) и функция риска, равная P(N)=[1-L(N)], где N – 

ожидаемое число повторений нагрузки. 

Исследованы интеллектуальные модели извлечения и представления 

знаний. Наиболее известной моделью представления знаний, основанной на 

дедукции, является продукционная модель. Обучение самим продукциям в 

некоторых системах также происходит на основании дедуктивного вывода – 

обучения по инструкциям. Эта форма обучения состоит в приобретении знаний 

при наличии внешних источников (инструкции, ссылки и т. д.) более или менее 

ориентированным образом. 

Рассмотрены методы интеллектуального анализа данных (Data Mining), 

которые применяются для автоматического обнаружения эмпирических 

закономерностей и использования их при решении задач классификации, 

распознавания образов, прогнозирования и диагностики. Особенность этих 

методов состоит в их ориентации на задачи, для которых использование 

традиционных статистических методов вызывает большие затруднения.  

К методам анализа диагностических данных (Data Mining) следует отнести 

так называемый формальный концептуальный анализ (ФКА), введенный 

Рудольфом Вилле. Он является математическим подходом анализа данных, 
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базирующимся на теории решеток Биркгофа. ФКА позволяет получить из 

неструктурированной информации структурированную. 

При обучении часто возникают ситуации, связанные с неполной 

информацией, например, когда информации о конструкции недостаточно для 

того, чтобы построить объяснение и/или доказательство некоторого 

наблюдаемого факта. В этом случае задача обучения ставится как задача 

выявления и/или установления причинно-следственных связей. Решить данную 

задачу можно, если использовать для объяснения наблюдаемых (или 

установленных) фактов абдуктивный вывод. В некотором смысле абдукция 

обратна дедукции.  

В качестве абдуктивного правила вывода принята следующая форма 

записи 

B, A ¾ ®¾ B

A , 

Данное правило расшифровывается следующим образом: если истинно B 

и A является причиной B, то истинно A. 

Поскольку объект управления интеллектуальными системами поддержки 

принятия решений часто представляет собой сложный комплекс, показано, что 

актуальной является разработка абдуктивных методов для решения задач 

диагностики сложных узлов конструкций в условиях неопределенности на 

основе абдуктивного логического вывода. 

Третья глава посвящена разработке математического и алгоритмического 

обеспечения комплексирования информации и разработки интеллектуального 

прогноза безопасности конструкций  

В настоящее время при проведении технического диагностирования 

конструкций (в т.ч. в целях проведения экспертизы промышленной 

безопасности) применяют различные методы неразрушающего контроля, в 

настоящей работе рассматривалось применение ультразвукового (УК), 

радиационного (РК) и визуально измерительного (ВИК) метода контроля. Так 

как исследования имеют различные физические принципы и различные форматы 

итоговых результатов для каждого типа изображений - РК, УК и ВИК 

разрабатывается собственная глубинная нейронная сеть CNN, входными 

данными которой является изображение с возможными участками, 

содержащими дефекты. Выходными данными является значения критичности 

дефектов, разделенные на 4 браковочных зон, содержащей исследуемый участок 

(Рис. 3). 

После обучения на глубинные нейронные сети поступают результаты РК, 

УК и ВИК исследуемой конструкции, выбирается подвыборочный слой 

глубинной нейронной сети CNN1 и выполняется исследование кластерного 

состава выходов нейроном методом PCA (principal component analysis - метод 

главных компонент) в результате которого формируются векторы Vout/r, Vout/u 

и Vout/v содержащие результаты обработки в едином пространстве. 

(11) 
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Рис. 2. Структурная схема нейросетевой предобработки и 

комплексирования разнородных данных с помощью вейвлет-базисов 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Рис. 3. Результаты проведения неразрушающего контроля методами УЗК, 

ВИК, РК для ввода исходных данных (зона 1 превышение браковочного уровня 

более чем на 10% от требований, заложенных в нормативные документы; зона 2 

превышение браковочного уровня на 10%; зона 3 от 0 до 10% ниже 

браковочного уровня; зона 4 менее 10% браковочного уровня) 

Зона 1 

Зона 2 

Зона 3 

Зона 4 
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Комплексирование векторов Vout/r, Vout/u и Vout/v производится с 

помощью метода выделения когерентных структур, использующий библиотеку 

локальных тригонометрических базисов и вейвлет-пакетное преобразование. 

Когерентная структура имеет вид: 

I

Y

k
Y

w
Y

k  =)(   Mk 1     (12) 

Наилучшей когерентной структурой с номером α во всех исходных 

изображениях библиотеки считается такая, которая минимизирует функцию 

стоимости: 

C(Yα)=min


 C(Yι),  ι=1,…,L, 

где 

C*=
=











I

i
i

w
Iσ1

2

X2
ˆ

1
, 

где 

)(

iYw
 - вейвлет-коэффициенты, рассчитанные для базиса ßι, ι=1,...,L, 

i=1,...,I, здесь I - количество пикселей (вейвлет-коэффициентов), определяемое 

размерами УК, РК и ВИК; 


=

=
I

i
Yi

w
I 1

22 1


 - дисперсия, рассчитанная для всех 

вейвлет-коэффициентов. 

Выбор наилучшей когерентной структуры зависит от вида вогнутой 

функции Шура Φ. В алгоритме используется энтропия вида: 

uuu ln)( −= , 0u . 

Специальная функция стоимости (15) показывает, какой из вейвлет-

базисов приносит максимальную энтропию и следовательно наиболее 

достоверное значение остаточного ресурса Ycomp.  

Предложена модель прогнозирования безопасности конструкций путем 

автоматизированного построения прогностических моделей на основе 

глубинной нейронной сети, использующих большой набор разнообразных 

входных данных, например, значения временного ряда остаточного ресурса 

Ycomp, эксплуатационные параметры, сведенья об инцидентах и ремонтах, 

результаты неразрушающего контроля (мониторинга) объектов и др. (рис. 4).  

Структура ГНС состоит из свёрточного и подвыборочного 

прогностического слоя. Сверточные и подвыборочные слои чередуются друг с 

другом. Сверточный слой обеспечивает выбор наиболее опасных параметров 

нейронных сете влияющих на несущую способность конструкций. В свою 

очередь, каждый из этих слоев состоит из набора плоскостей которые 

(15) 

(13) 

(14) 
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представляют собой различные параметры несоответствий в конструкции, 

причем нейроны одной плоскости имеют одинаковые веса (так называемые 

общие веса), ведущие ко всем локальным участкам предыдущего слоя (как в 

зрительной коре человека). 

 

 

Рис. 4. Структурная схема глубинной нейронной сети (ГНС) системы 

прогнозирования ресурса конструкций 

Кодирующая часть представляет собой рекуррентную сеть, на выходе из 

которой ̆ формируется вектор в пространстве размерностью latent_size. Данная 

часть формирует локальные прогнозы влияния дефектов и информации о 

значениях по техническому состояние конструкции. Количество нейронов в 

кодирующей ̆ сети задается выходными параметрами. Выходные параметры 

определяются с учетом факторов влияющих на несущую способность 

конструкций. При успешном обучении этот вектор содержит всю информацию, 

необходимую для восстановления последовательности и получению локальной 

информации о возможности потери несущей способности. Следовательно, этот 

вектор можно использовать для последующей кластеризации 

последовательностей для определения различных показателей влияющих на 

несущую способность конструкции. 

Декодирующая часть также представляет собой рекуррентную сеть 

размерности скрытых параметров. На выходе формируется декодированная 

последовательность, которая должна быть близка к входной 

последовательности. Функция потерь определяется как среднее от суммы 

квадратов ошибок при восстановлении последовательности.  

Для определения центроидов кластеров применяется метод t-SNE (англ. t-

distributed Stochastic Neighbor Embedding – стохастическое вложение соседей с t-

распределением), входной характеристикой которого является 

субдискретизирующий слой нейросетевого классификатора. В процессе анализа 

вектора признаков нейронная сеть кластеризует значения на скрытом слое и 

анализирует методом t-SNE. 
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Метод паллиативного прогнозирования основывается на динамике и 

величине смещений центроидов кластера, которые отражают взаимное влияние 

различных дефектов на интегральную оценку достоверности уровня 

безопасности конструкции. Исходными данными для метода t-SNE является 

подвыборочный слой нейронной сети комплексирования данных. 

 

 
a)                                                               б) 

Рис. 5. Визуальное представление пучков дефектов с помощью динамики 

смещения центроидов кластера дефектов методом t-SNE: ось X – пространство 

признаков скрытого слоя № 1 (ед.); ось Y – пространство признаков скрытого 

слоя № 2 (ед.) 

Расстояние между центроидами оценивается с помощью вычислений 

расстояний между элементами кластера, с использованием максимального 

значения косинусной мерой сходства представленная следующей формулой: 

𝑅𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = argmax
𝑥∈𝑉

(
∑ 𝐴𝑖𝑥𝑖

𝑛
𝑖=1

√∑ (𝐴𝑖)2𝑛
𝑖=1 √∑ (𝑥𝑖)2𝑛

𝑖=1

), 

где 𝑉 =  {𝑥1,  𝑥2 … 𝑥𝑛}  – это набор признаков свёрточного слоя ядра 

глубинной нейронной сети; 

𝑥 — это конкретный признак свёрточного слоя. 

На основе данного расстояния и скорости смещения с помощью базы 

знаний делается вывод о прогнозном состоянии участка конструкции в 

категориях «Норма», «Норма со значительными отклонениями», «Ухудшенное 

состояние», «Предаварийное состояние», «Авария». 

База знаний формируется путем составления экспертных гипотез. 

Проверка гипотез проходит с помощью абдукционного логического 

вывода по результатам которого выделяются критические параметры, влияющие 

на несущую способность сооружений. 

(16) 
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Проверка гипотез осуществляется с помощью определения степени 

истинности гипотез при задействовании определённого количества правил в базе 

знаний. 

База знаний представляет набор правил и фактов, сформированных 

экспертом в области промышленной безопасности. 

При работе ядра логического вывода правила являются гипотезами для 

проверки в модели абдуктивного логического вывода. С помощью работы 

нейронной сети решается задача логического вывода на основе подтверждения 

нескольких утверждений.  

На основе абдуктивного логического вывода формируется пул из 

нескольких правил, которые считаются основными гипотезами причин 

дефектов. 

Для модуля прогнозирования входные данные представляют собой̆ csv-

файлы среза подвыборочного слоя с единицами измерения смещения, 

выраженными в миллиметрах на плоскости среза с шкалированном графическим 

масштабом.  

Обучение глубинных слоёв происходит на основе переобучения на 

текущей и ретроспективной выборке данных селекции критических причин 

дефектов и адаптивной реакцией к внешним воздействиям. 

Описана методика получения обучающей выборки влияния полученных 

данных в результате технического диагностирования и эксплуатации 

конструкций для экспериментальных исследований. 

В четвертой главе представлена программная реализация и 

экспериментальные исследования разработанных методов и алгоритмов в 

автоматизированном комплексе прогнозирования безопасности конструкций. 

На рис. 6 показана структурная схема автоматизированного комплекса 

прогноза безопасности на основе глубинной нейронной сети. 

Объект состоит из ряда узлов несущей конструкции А1 …АL, имеющих 

технологические связи, на каждом из которых присутствует, по крайней мере, K 

информативных точек установки датчиков или измерений физических величин. 

Данные точки определяются по значениям, полученным в результате 

технического диагностирования и мониторинга конструкции. 

Программный комплекс модели интеллектуальной части ЭС реализован в 

виде двухступенчатого алгоритма. Работа ГНС возможна как в реальном 

времени образования векторов диагностических признаков, так и от архивных 

данных. Возможно использование в качестве входных данных алгоритмов 

результатов моделирования напряженно деформированного состояния 

конструкций, построенных на основе данных технического диагностирования и 

мониторинга. 

В качестве базового алгоритма обучения используется алгоритм обратного 

распространения ошибки с подстройкой количества циклов обучения либо 

допускаемого значения ошибки, которое является критерием останова 

регрессионного процесса обучения. Обобщающий модуль CNN2, структура 
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которого показана на Рис. 6, выдаёт окончательное решение о классификации 

состояния конструкции. Модуль CNN2 получает информацию о возможном 

поведении параметров конструкции в виде частного решения от CNN1 и 

элементы исходного вектора диагностических признаков. 

 

 

Рис. 6. Структура автоматизированного комплекса прогноза состояния 

конструкций несущих сооружений 

Экспериментальные исследования проводились на различных 

металлических и железобетонных строительных конструкциях, 

эксплуатируемых на опасных производственных объектах. 

Функционирование и этапы методики прогнозирования эксплуатационной 

безопасности конструкций на основе применения диагностики и методов 

искусственного интеллекта показана на примере проведенной оценки дымовой 

трубы анодной печи, установленной в плавильном цеху металлургического 

производства (Рис. 7). Данная труба введена в эксплуатацию в 1970 году и 

эксплуатировалась до августа 2021 года. В августе 2021 года произошло 

разрушение данной трубы в процессе эксплуатации. В соответствии с 

обследованием и экспертной оценкой, проведенной в 2017 г. данный объект 

может безопасно эксплуатироваться в течение 10,1 лет.  
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Рис. 7. Общий вид до разрушения и схема дымовой трубы 

Обследуемая дымовая труба предназначена для отвода дымовых газов от 

анодной печи: высота 55 метров, диаметр ствола 2 м, температуру нагрева 

поверхности не более 280 градусов при рабочих режимах печи 1250-1400 

градусов. 

В соответствии с действующими нормативно техническими документами 

при проведении технического диагностирования дымовой трубы были 

применены методы неразрушающего контроля визуальный и измерительный, 

ультразвуковой и тепловой метод контроля. 

По результатам анализа эксплуатационной документации было 

установлено, что в период с 2015 года по 2021 год печь работала с превышением 

свыше 1400 градусов от 6 до 15 раз в месяц. Пиковое превышение происходило 

от 8 до 20 раз в месяц на значения от 1600 ºС до 2100 ºС. Остальное время печь 

работала в нормальном режиме в интервале - от 1000 ºС до 1400 ºС (Рис. 8) 

 

 
Рис. 8. График превышения параметров печи свыше 1400 градусов. Рабочий 

режим от 1000 до 1400. ºС 
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По результатам обследования, проведенного после обрушения 

конструкции трубы было определено, что причиной обрушения трубы стало 

значительное утонение металла трубы в нижней части. Данное утонение было 

вызвано превышение рабочих параметров при эксплуатации печи (превышение 

температурных режимов печи). 

В целях подтверждения возможности применения искусственного 

интеллекта при определении возможности дальнейшей эксплуатации 

строительных конструкций были проведены экспериментальные исследования. 

Экспериментальные исследования проводятся с применением разработанного 

программного комплекса, реализующего созданные модели прогнозирования 

несущий способности конструкций с помощью методов искусственного 

интеллекта.  

Измерительные данные поступают в модуль с абдуктивным логическим 

выводом, который формирует пул гипотез и проверяет их на базе знаний. По 

результатам работы выделяются наиболее вероятные гипотезы причинно-

следственной связи влияния факторов на возникновения дефекта или аномалий 

измерительных данных. Выделенные параметры, которые влияют на остаточный 

ресурс, отмечаются как критические и присваивается степень критичности, 

выраженной коэффициентами скрытой связи с причинами влияния на несущую 

способность конструкции: «Слабая» - зелёный, «Умеренная» - жёлтый, 

«Сильная» - красный. 

Прогнозирование основывается на модели динамики влияния критических 

параметров на остаточный ресурс. Методом прогнозирования является анализ 

динамики кластеризованных данных с помощью свёрточной нейронной сети 

методом t-SNE.  

Входными данными (векторами признаков) служат измерительные данные 

стационарных датчиков, измеряющих эксплуатационные параметры 

производственного процесса (в том числе и показания температурных режимов). 

Варианты прогноза хранятся как вектор значений вероятности снижения 

остаточного ресурса во временной шкале, описывающий график модели 

прогноза. 

По результатам проведенного технического диагностирования следует 

ввести входные описательные данные (данные диагностики, данные по внешним 

факторам и эксплуатационные параметры). Данные могут заноситься вручную 

или автоматически при использовании мониторинговых систем. При 

диагностике трубы данные вносились вручную в связи с отсутствием 

установленной мониторинговой системы. Каждому типу измерений 

присваивался свой номер. Измерения номеруются шифрами ДД№1, ДД№2, и тд. 

При проведении экспериментальных исследований идет проверка гипотез 

с помощью абдукционного логического вывода по результатам которого 

выделяются критические параметры, влияющие на несущую способность 

сооружений. 
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Рис. 9 Функциональная схема программного комплекса 

При работе искусственного интеллекта из база знаний отбор правил и 

фактов, сформированных экспертом в области промышленной безопасности 

приведен на Рис. 10. 
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1 ЕСЛИ разрушение футеровки ЕСТЬ значительное И температура 

среды внутри ЕСТЬ высокая, ТО повреждение металла ЕСТЬ сильный 

фактор обрушения. 

2 ЕСЛИ разрушение футеровки ЕСТЬ незначительное И температура 

среды внутри ЕСТЬ высокая, ТО повреждение металла ЕСТЬ средний фактор 

обрушения. 

3 ЕСЛИ крен ЕСТЬ большой И уровень коррозии ЕСТЬ средний, ТО 

повышенная деформация ЕСТЬ сильный фактор обрушения. 

4 ЕСЛИ уровень коррозии ЕСТЬ высокий И уровень давления ветра 

ЕСТЬ высокий, ТО повышенное напряжение ЕСТЬ сильный фактор 

обрушения. 

5 ЕСЛИ разрушение креплений ЕСТЬ значительное И уровень 

давления ветра ЕСТЬ высокий, ТО повышенное напряжение ЕСТЬ сильный 

фактор обрушения. 

6 ЕСЛИ крен ЕСТЬ большой И разрушение креплений ЕСТЬ 

значительное, ТО повышенная деформация ЕСТЬ сильный фактор 

обрушения. 

Рис. 10. Примеры правил сформированных экспертами и заложенных в 

базу знаний нейронной сети 

При работе ядра логического вывода правила являются гипотезами для 

проверки в модели абдуктивного логического вывода. С помощью работы 

нейронной сети решается задача логического вывода на основе подтверждения 

нескольких утверждений. При этом возможно формирование новых гипотез.  

На основе абдуктивного логического вывода формируется пул из 

нескольких правил, которые считаются основными гипотезами причин дефектов 

(Рис. 11). 
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Рис. 11. Графики значений степени истинности гипотез сформированных 

из анализа базы знаний 

В ходе экспериментальных исследований выявлены три основные группы 

гипотез и две из них подтверждённые на всей базе знаний, имеющие степень 

истинности 0,5 и выше. 

Выделенные гипотезы отдельно отображаются в интерфейсе и содержат 

правила с их параметрами. Блок «Результаты абдукции» содержит интерфейсы 

отображения параметров и расчет коэффициентов скрытых связей с 

возникновением дефектов, указанных в гипотезах.  

В ходе изменения технологического процесса было выявлено изменения 

температурного графика работы оборудования в плавильном цеху. 

Автоматизированный программный комплекс выявил температуру работы как 

критический фактор, влияющий на несущую способность трубы, с помощью 

абдукционного логического вывода на базе знаний с новыми входными 

измерительными данными эксплуатационных параметров производственного 

процесса (Рис. 12). 

 

 

Рис. 12. Выявленные критические параметры для нормального 

эксплуатационного режима 

Интерпретировать результаты можно следующим образом. 

Температурный режим работы оборудования является важным фактором для 
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определения сроков возможной эксплуатации дымовой трубы, при этом факт 

наличия трещин на поверхности обмуровки дымовой трубы и влажность 

окружающей среды так, же являются важными факторами.  

Выявлены сильные и умеренные влияющие параметры - «Температура» с 

коэффициентами истинности влияния 0,84 и «Раскрытие трещин, стыков» с 

коэффициентами истинности 0,45 соответственно. 

Выявлен доминирующий критический параметр - «Температура» с 

коэффициентами истинности скрытой связи 0,84. Данный коэффициент 

превышает 0,5, что заставляет отнести параметр «Температура» к критическим, 

влияющим на прогноз несущей способности. 

При попадании нескольких измеряемых и приведённых к нечёткости 

параметров сработали 3 правила в базе знаний, которые были отобраны 

абдуктивным логическим выводом на основе нечёткого логического вывода 

алгоритмом Мамдани. На основе результирующей степени истинности 

сработавших правил и метода решётки Биркгофа выявлены критичные 

параметры. Для всех параметров отдельно рассчитывается коэффициент уровня 

скрытой связи на основе векторов измерений. 

Критичные параметры и коэффициенты подаются на свёрточную 

нейронную сеть для определения варианта временного вектора прогноза 

несущей способности. 

Блок «Прогноз ресурса» содержит интерфейсы отображения результатов 

работы алгоритма прогнозирования остаточного ресурса и несущей способности 

для заданных конструкций, внешних условий и критичных параметров. 

Колонка «Временной ряд кластеров» содержит результаты кластеризации 

данных на скрытом слое методом t-SNE. После кластеризации методом t-SNE, 

рассчитываются центроиды кластеров и величина их расхождения для 

конкретной итерации. 

На основе результатов расхождения центроидов кластеров и применении 

оценки прогнозной модели методом MSE формируется прогнозная модель с 

указанием значений несущей способности, интерполированного в будущее по 

месяцам, и выбирается описательная характеристика. 

График прогноза (Рис. 13) отображает значения вероятности 

предаварийного состояния конструкции исходя из выбранной модели. В данном 

случае программный комплекс рассчитал вероятность предаварийного 

состояния 0,981 на глубине прогноза 42 месяца (3 года 6 месяцев). Расчётный 

прогноз несущей способности конструкции (вероятность предаварийного 

состояния выше 0,9) - 3 года и 5 месяцев. В марте 2021 года конструкция должна 

была быть выведена из эксплуатации по расчётной прогнозной модели. 



26 

 

Рис. 13. График прогноза ресурса из выбранной модели 

На графике сравнения прогноза ресурса (Рис. 14) показано, что при 

применении метода искусственного интеллекта, для определения остаточного 

ресурса конструкций, позволяет спрогнозировать срок дальнейшей 

эксплуатации конструкции с учетом более широкого спектра параметров, чем 

при проведении расчетов в соответствии с требованиями нормативно-

технических документов, действующих при проведении экспертизы 

промышленной безопасности. Реализация предлагаемого подхода позволит 

создать новое поколение методов испытаний и прогнозирования 

эксплуатационной устойчивости с оценкой предельного ресурса эксплуатации 

элементов и конструкций, что в конечном счете даст дополнительную 

возможность для выработки практических рекомендаций по подтверждению или 

продлению гарантийных сроков эксплуатации и повышению надежности и 

безопасности эксплуатации конструкций. 
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Рис. 14. График прогноза ресурса, оцененный с помощью экспертной 

оценки и рассчитанный с помощью программного комплекса 

 

В заключении кратко изложено содержание проведенного исследования, 

представлены достигнутые научные и практические результаты, 

сформулированы основные выводы. 

В приложении представлены копии актов о внедрении практических 

результатов диссертационной работы, копия авторского свидетельства о 

регистрации программы для ЭВМ, выданной федеральной службой по 

интеллектуальной собственности. 

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ 

1. Создана методология оценки технического состояния строительных 

конструкций на опасных производственных объектах, отработавших свой 

установленный срок службы на основе методов искусственного интеллекта на 

базе нейронных сетей с использованием диагностических данных в т.ч. данных 

природно-климатического воздействия. 

2. Разработана, реализована и обучена нейронная сеть, 

обеспечивающая прогноз, эксплуатации строительных конструкций путем 

установления взаимосвязи: между внешними факторами, влияющими на 

несущую способность конструкции, условиями эксплуатации и изменениями 

характеристик дефектов элементов, выявленных в процессе технического 

диагностирования. Данная нейронная сеть, после проведения обучения, 
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позволяет прогнозировать ресурс эксплуатации строительных конструкций по 

их текущему техническому состоянию.  

3. Сформулированы и обоснованы алгоритмы по определению времени 

до наступления предельного состояния конструкций в процессе эксплуатации (в 

реальном режиме времени) на основе выявления когерентных вейвлет-базисов.  

4. Установлено минимальное количество корреляционных 

зависимостей между изменением прогноза величины остаточного ресурса 

эксплуатации строительных конструкций, основанного на вероятностных 

методах с малой выборкой статистической информации, и объективной оценкой 

времени возможной дальнейшей эксплуатации конструкций с заданным 

уровнем надёжности от величины выборки исходной статистической 

информации. 

5. Доказана ограниченность применения вероятностного метода 

предельных состояний при расчёте надежности и долговечности конструкции, 

который не позволяет получить количественные характеристики безопасности и 

предельного ресурса в условиях неполной диагностической информации. 

6. Разработано программное обеспечение автоматизированного 

многокритериального анализа диагностической информации с учетом 

эксплуатационных параметров и природно-климатических воздействий 

"СПЕКТРА", которое позволяет прогнозировать остаточный ресурс 

исследуемых конструкций. 

7. Проведена экспериментальная апробация разработанных 

алгоритмов, учитывающих специфику комплексирования информации 

диагностических данных и адаптацию к плохо формализуемым параметрам, 

подтвердила эффективность разработанных методов и алгоритмов при оценке 

состояния конструкций и прогнозирования ресурса их эксплуатационной 

надежности. 

8. Результаты выполненных исследований апробированы на различных 

конструкциях и подтвердили высокую (0.9) достоверность. Разработанный 

программный продукт применён при оценки и прогнозирования сроков 

дальнейшей эксплуатации конструкций на 6 предприятиях различных отраслей 

промышленности. 
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