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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 
 

Актуальность проблемы. Поршневые двигатели в настоящее время оста-
ются основными источниками энергии для наземного и водного транспорта и 
имеют наивысший КПД среди существующих в настоящее время тепловых ма-
шин. Однако дефицит резервов природного топлива и ужесточение экологиче-
ских требований ставят актуальную задачу перед транспортным двигателестро-
ением - в ближайшем будущем перейти на альтернативные топлива, среди кото-
рых наиболее перспективным является водород.   

Особенности горения водорода, как моторного топлива, обусловлены его 
теплофизическими свойствами, и горение водорода сопровождается высокими 
(по сравнению с бензиновым двигателем) значениями как скоростей тепловыде-
ления и перемещения пламени, так и локальных и максимальных за цикл темпе-
ратур рабочего тела. Это приводит к изменению условий конвективного тепло-
обмена и увеличению термических нагрузок на основные детали, в частности на 
поршень. Следует также учесть отсутствие слоя нагара на тепловоспринимаю-
щих поверхностях камеры сгорания, играющего роль естественного теплоизоля-
тора в случае горения бензина и дизельного топлива. Очевидно, что возникает 
необходимость проведения исследований локального теплообмена в камере сго-
рания водородного двигателя с целью оценки тепловых потерь, определения тер-
мических нагрузок на поверхности камеры сгорания и теплового состояния де-
талей, что особенно важно при конвертировании серийных бензиновых двигате-
лей на водород.  

Несмотря на очевидную актуальность такой задачи, до настоящего времени 
не известны детальные исследования по теплообмену в камере сгорания водо-
родного двигателя с внешним смесеобразованием с применением 3D-моделей 
рабочего процесса и теплообмена. Известные до настоящего времени исследова-
ния ограничиваются применением известных термодинамических соотношений, 
а также их уточнениями введением эмпирических коэффициентов. 

Цель работы. Целью работы являлось экспериментальное исследование и 
3D-моделирование рабочего процесса и локального нестационарного теплооб-
мена в камере сгорания и теплового состояния поршня водородного двигателя с 
внешним смесеобразованием, работающего на обедненной смеси, в зависимости 
от изменения регулируемых, а также конструктивных факторов.     

Основные задачи диссертационной работы. Для достижения поставлен-
ной цели решались следующие задачи: 

1. Разработка 3D-математической модели рабочего процесса и локального 
нестационарного теплообмена в камере сгорания (КС) водородного двигателя с 
внешним смесеобразованием, основанной на фундаментальных уравнениях типа 
Навье-Стокса и современных RANS-моделей турбулентности, горения и турбу-
лентного теплообмена в пристеночных слоях; 

2. Экспериментальное определение эффективных показателей и индициро-
вание экспериментального бензинового двигателя, конвертированного на водо-
род, с внешним смесеобразованием и принудительным зажиганием, работающем 
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на обедненной смеси водорода с воздухом в стендовых условиях в широком диа-
пазоне изменения нагрузочных и скоростных режимов работы.  

3. Установление опытным путем границ изменения коэффициента избытка 
воздуха при работе на обедненной смеси, предотвращающих возникновение ано-
мальных процессов сгорания (детонация, преждевременное воспламенение, об-
ратный выброс). Верификация 3D-математической модели на основе получен-
ных экспериментальных данных.  

4. Моделирование термических граничных условий на тепловоспринимаю-
щей поверхности поршня водородного двигателя, работающего на обедненной 
смеси, изменяющихся в зависимости от регулируемых параметров рабочего про-
цесса, таких, как коэффициент избытка воздуха αв, угол опережения зажигания 
φзаж, степень рециркуляции отработавших газов (РОГ), а также в зависимости от 
конструктивных особенностей камеры сгорания; 

5. Моделирование теплового состояния поршня в зависимости от изменения 
указанных регулируемых параметров рабочего процесса водородного двигателя, 
работающего на обедненной смеси; 

6. Оценка тепловых потерь в рабочем процессе водородного двигателя в за-
висимости от особенности горения водорода;  

7. Сравнительный анализ результатов локального теплообмена и теплового 
состояния поршней серийного базового бензинового двигателя с внешним сме-
сеобразованием и его модификации, конвертированной на водород и выдача 
практических рекомендаций по конвертированию серийного бензинового двига-
теля с внешним смесеобразованием на водород.     

Научная новизна работы заключается в том, что: 
- впервые задача определения термических граничных условий, необходимых 
для моделирования теплонапряженного состояния деталей водородного двига-
теля, работающего на обедненной смеси, решается в 3D-постановке; 
- предложена и расчетно-экспериментальными исследованиями обоснована ги-
потеза, основанная на явлении гашения пламени для разъяснения факта относи-
тельного увеличения тепловых потерь в рабочем процессе водородного двига-
теля по сравнению с традиционным бензиновым двигателем. 

Достоверность и обоснованность научных положений определяются 
- применением фундаментальных законов и уравнений теории теплообмена, 
гидро-газодинамики и теории горения с соответствующими граничными услови-
ями, современных численных методов реализации 3D-математических моделей, 
результатами верификации математических моделей путем сравнения с резуль-
татами эксперимента; 
- применением современных, хорошо апробированных RANS-моделей турбу-
лентности, теплообмена в пристеночных слоях и горения, реализуемых в 3D- 
CFD коде AVL FIRE (лицензионное соглашение между фирмой AVL и МГТУ им. 
Н.Э. Баумана);  
- применением надежных опытных данных по индицированию и эксперимен-
тальному исследованию рабочего процесса экспериментального водородного 
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двигателя, в том числе полученных при непосредственном участии автора дис-
сертации в процессе совместных исследований МГТУ им. Н.Э. Баумана и Пекин-
ского технологического института. 

Практическая значимость работы состоит в том, что: 
- разработан инструмент, позволяющий прогнозировать локальные нестационар-
ные тепловые нагрузки на тепловоспринимающие поверхности камеры сгорания 
водородного двигателя, позволяющие с достаточной точностью моделировать 
тепловое состояние деталей, в частности поршня, в зависимости от изменения 
его регулируемых и конструктивных параметров;     
- определены диапазоны изменения регулируемых параметров (коэффициента 
избытка воздуха, угла опережения зажигания, степени РОГ, частоты вращения 
коленчатого вала и др.), обеспечивающих предотвращение возникновения ано-
мальных процессов сгорания в водородном двигателе с внешним смесеобразова-
нием и приемлемые теплонапряженные состояния его основных деталей, в част-
ности поршня.  

 Автор защищает: 
- результаты экспериментального исследования и 3D-моделирования рабочего 
процесса и локального теплообмена в камере сгорания водородного двигателя по 
влиянию регулируемых параметров (коэффициента избытка воздуха, угла опе-
режения зажигания, степени РОГ, частоты вращения коленчатого вала и др.) на 
термические нагрузки основных деталей и их тепловое состояние при работе на 
обедненных смесях;  
- экспериментально обоснованные 3D-математические модели внутрицилиндро-
вых процессов в водородном двигателе с внешним смесеобразованием и прину-
дительным зажиганием, а также методы численной   реализации этих моделей и 
результаты численных экспериментов, полученных на основе разработанных и 
применяемых моделей и методов. 

Личный вклад соискателя. Основные результаты диссертационной ра-
боты, методы и модели, выносимые на защиту, получены автором самостоя-
тельно в ходе теоретических разработок и экспериментальных исследований. 
Автором решена задача определения термических граничных условий, необхо-
димых для моделирования теплонапряженного состояния поршня водородного 
двигателя, работающего на обедненной смеси в 3D-постановке; проведены чис-
ленные эксперименты по исследованию рабочего процесса и теплового состоя-
ния поршня водородного двигателя; предложена и экспериментально обосно-
вана гипотеза, основанная на явлении гашения водородно-воздушного пламени 
для разъяснения факта относительного увеличения тепловых потерь в рабочем 
процессе водородного двигателя по сравнению с традиционным бензиновым 
двигателем. 

Апробация работы. Основные результаты диссертационной работы были 
доложены: 
- на II Международной научно-практической конференции «Материаловедение, 
машиностроение и энергетика: проблемы и перспективы развития» (Алтайский 
государственный технический университет им. И.И. Ползунова, 20-21 ноября 
2020 г. Форма участия в конференции: заочная); 
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- на заседаниях кафедры комбинированных двигателей и альтернативных энер-
гоустановок МГТУ им. Н.Э. Баумана в 2019, 2020, 2021 г.  

Публикации: По теме диссертации опубликовано 10 научных статей, в том 
числе 9 статей в журналах, рецензируемыхВАК РФ [1, 3, 4, 5, 6, 7, 8], и 3 статьи, 
в журналах рецензируемых международными системами цитирования Scopus [4, 
5, 6]. Общий объем опубликованных работ - 2,3 п.л.  

Структура и объем работы. Диссертационная работа содержит 151 стра-
ница основного текста, 68 рисунков, 5 таблиц, состоит из введения, 4-х глав, об-
щих выводов, списка литературы, включающего 102 наименования. 

        
СОДЕРЖАНИЕ ДИССЕРТАЦИИ 

 
Во введении проанализирована целесообразность исследования локаль-

ного теплообмена в двигателе, конвертированном на газообразный водород. 
Обоснована актуальность, научная новизна и практическая ценность работы, 
дана общая характеристика диссертации. 

В первой главе рассмотрены преимущества водорода как альтернатив-
ного моторного топлива в поршневом водородном двигателе, приведен анализ 
особенностей рабочего процесса водородного двигателя. Проанализированы ра-
боты по исследованию рабочего процесса и теплообмена в традиционных и во-
дородных двигателях, изложенные в трудах российских и зарубежных исследо-
вателей: И.Л. Варшавского, В.И. Ерохова, А.А. Зеленцова, Н.А. Иващенко, Р.З. 
Кавтарадзе, А.И. Мищенко, Д.О. Онищенко, М.Р. Петриченко, М.Г. Шатрова, 
Н.Д. Чайнова, G. Woschni, H. Rottengruber, K. Zeilinger, H. Eiclseder, Baigan Sun, 
Yichun Wang, T. Shudo, S. Nabetani, Y. Nakajima, S. Hiroyuki и др. 

На основе проведенного анализа работ по данной тематике была постав-
лена цель диссертационной работы и определены задачи, решение которых необ-
ходимо для ее достижения (см. выше). 

Вторая глава посвящена выбору математической модели рабочего про-
цесса и локального нестационарного теплообмена в камере сгорания водород-
ного двигателя с внешним смесеобразованием и верификацию 3D- модели рабо-
чего процесса водородного двигателя с применением результатов эксперимен-
тального исследования. Математическая модель основана на фундаментальных 
уравнениях турбулентного переноса количества движения (Навье-Стокса), энер-
гии (Фурье-Кирхгофа), диффузии (Фика), а также уравнения неразрывности. Си-
стема уравнений (Форма Рейнольдса) приводится в виде 
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где D/Dτ  - субстанциональная производная; ρ - плотность, кг/м3; p - давление, 
Па; Gi - проекция вектора плотности объемных сил, Н/м3, на ось Oxi прямоуголь-
ной декартовой системы координат; С - концентрация, кг/м3; H - полная удельная 
энергия, Дж/кг; μ - динамическая вязкость, кг/(м ⋅с); cp - теплоемкость при посто-
янном давлении, Дж/(кг ⋅K); wr - скорость химической реакции на единицу объ-
ема, кг/(м3 ⋅с); Qr - количество выделяемой теплоты на единицу массы, Дж/кг; λ - 
теплопроводность, Вт/(м ⋅K); δij -  символ Кронекера; D - коэффициент диффузии, 
м2/с ; 𝑚̇𝑚 - интенсивность источника массы (скорость изменения массы химиче-
ской компоненты в единице объема), кг/(м3 ⋅с), W - вектор скорости. 

В данной диссертационной работе для замыкания системы уравнений (1) 
используется относительно новая k-ζ-f - модель турбулентности, специально раз-
работанная RANS-модель для моделирования процессов в поршневых двигате-
лях. k-ζ-f - модель турбулентности, как показывает ее название, состоит из трех 
дифференциальных уравнений: 

( ) t
k

j k j

Dk kP
Dt x x

µρ ρ ε µ
σ

  ∂ ∂
= − + +  ∂ ∂   

, 

                                    
*
1 2k t

j k j

C P CD
Dt T x x

ε ε ε µε ερ ρ µ
σ

  − ∂ ∂
= + +  ∂ ∂   

,                           (2) 

  t
k

j j

D f P
Dt k x xζ

µζ ζ ζρ ρ ρ µ
σ

  ∂ ∂
= − + +   ∂ ∂   

. 

Для моделирования теплообмена в пограничном слое - использование мо-
дели, основанной пристеночных функциях. Распределения скорости и темпера-
туры в турбулентном пограничном слое задаются в безразмерных координатах 

закона стенки (
+y - безразмерное расстояние от стенки, +u - безразмерная ско-

рость): 

𝜇𝜇+ = 𝐶𝐶𝜇𝜇
1/4 𝑘𝑘𝑝𝑝

1/2

𝑢𝑢
𝑢𝑢𝑝𝑝;      𝑦𝑦+ = 𝐶𝐶𝜇𝜇

1/4 𝜌𝜌𝑘𝑘𝑝𝑝
1/2

𝑦𝑦𝑝𝑝
𝜇𝜇

 ,                  (3) 
где индекс р - значение параметров в центральной точке контрольного объема, 
расположенного непосредственно у стенки.  

Средняя безразмерная температура рассчитывается по формуле                    
                                      𝑇𝑇+ = 𝐶𝐶𝜇𝜇

1/4𝑘𝑘𝑝𝑝
1/2 𝜌𝜌𝑐𝑐𝑝𝑝�𝑇𝑇𝑝𝑝−𝑇𝑇𝑤𝑤�

𝑞𝑞𝑤𝑤
                               (4) 

и её распределение задается по логарифмическому закону 
                                           𝑇𝑇+ = PrT �

1
æ

ln(𝐸𝐸𝑦𝑦+) + 𝑌𝑌�,                            (5) 
где 

𝑌𝑌 = 2,94 �� Pr
PrT
�
0,75

− 1� �1 + 0,28𝑒𝑒𝑒𝑒𝑒𝑒 �−0,007 Pr
PrT
��.          (6) 

                                     
В выражениях (5), (6) турбулентное число Прандтля PrT = 𝑣𝑣𝑇𝑇

𝑎𝑎𝑇𝑇
 и теплоемкость cp 

вычисляются для средней температуры; Тp - температура в центральной точке 
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контрольного объема, расположенного непосредственно у стенки; Тw - темпера-
тура на поверхности  стенки; qw - плотность теплового потока на стенке. Из вы-
ражения (4) определяется плотность теплового потока на стенке, Вт/м2, 

                            𝑞𝑞𝑤𝑤 = 𝐶𝐶μ
1/4𝑘𝑘𝑝𝑝

1/2ρ𝑐𝑐𝑝𝑝�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑤𝑤� �PrT �
1
æ

ln(𝐸𝐸𝑦𝑦+) + 𝑌𝑌��
−1

.       (7)  
Скорость диссипации кинетической энергии турбулентности оценивается подоб-
ными аргументами, допуская линейную вариацию масштаба длины в зависимо-
сти от расстояния от стенки: 

                                                      ε𝑝𝑝 = 𝐶𝐶μ
3/4 𝑘𝑘𝑝𝑝

3/2

æ𝑦𝑦𝑝𝑝
 .                                            (8) 

Для моделирования процесса сгорания обосновано применение расширенной 
модели когерентного пламени (ECFM-модели) - рекомендованной для бензино-
вых и газовых двигателей с искровым зажиганием. Реализация 3D-математиче-
ской модели внутрицилиндровых процессов была произведена   с помощью ком-
мерческой CRFD-программы FIRE, разработанной фирмой AVL List GmbH (Ав-
стрия). 

Объектом исследований является водородный двигатель, созданный на базе 
серийного, 4-цилиндрового, атмосферного ДВС с электронным, многоточечным 
впрыскиванием бензина во впускную систему. Базовый двигатель СА20 был 
предоставлен производителем - Китайской автомобильной компанией Чанань. 
Конвертирование данного двигателя на водород было осуществлено в Пекин-
ском технологическом институте (ПТИ) - Beijing Institute of Technology (BIT) с 
целью проведения соответствующих экспериментов. Основные технические 
данные экспериментального двигателя, конвертированного на водород, приве-
дены в Таблице1.  

Таблица 1.  

Технические данные экспериментального двигателя СА20, конвертированного 
на водород 

Параметр Значение 
Число цилиндров 4 

Диаметр цилиндра/ ход поршня, D/S, мм/мм 86/86 
Длина шатуна, l, мм 142, 8 
Степень сжатия, ε, - 10 
Система охлаждения Жидкостная 

Номинальная мощность, Ne, кВт, (при частоте 
вращения n, мин-1) 60 (при n=5500 мин-1) 

Максимальный крутящий момент, Мк, Н.м 
(при частоте вращения n, мин-1) 111 (при n=4000 мин-1) 

В результате экспериментов, проведенных c целью исследования влияния αв 
на протекание рабочего процесса водородного двигателя, установлено, что огра-
ничение изменений коэффициента избытка воздуха пределами αв=1,5-2,4 обес-
печивает стабильную работу опытного водородного двигателя без пропусков за-
жигания и аномальных явлений (обратная вспышка, преждевременное зажига-
ние, детонация). В связи с этим, в дальнейшем экспериментальные исследования 
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для режимов 0,9 < αв < 1,5 были ограничены и проводились только путем моде-
лирования. 

Верификация 3D- модели рабочего процесса водородного двигателя осу-
ществлялась путем сравнения результатов численных экспериментов, получен-
ных с применением коммерческого 3D CRFD-кода AVL FIRE, с результатами 
натурных экспериментов, проведенных в стендовых условиях в лаборатории 
ПТИ при непосредственном участии автора. На Рисунке 1 приведен пример со-
поставления индикаторных диаграмм, полученных по результатам моделирова-
ния и непосредственного измерения давления в цилиндре водородного двигателя 
пьезокварцевым датчиком Kistler. Отклонение данных моделирования давления 
от его измеренных значений не превышало 1-2%. 

 
Рисунок 1.  Сопоставление экспериментальной (______) и расчетной (__  __  __)  

индикаторных диаграмм водородного двигателя.  
Режим: n = 3000 мин-1, φзаж = 15º, αв = 1,64. 

Третья глава посвящается исследованию индикаторных показателей, ло-
кального нестационарного теплообмена в камере сгорания и теплового состоя-
ния поршня водородного двигателя в зависимости от коэффициента избытка воз-
духа.  При этом использован следующий подход: применение результатов моде-
лирования нестационарного локального теплообмена в камере сгорания водород-
ного двигателя ɑ(τ) и T(τ) в качестве граничных условий 3-его рода для решения 
краевой задачи теплопроводности поршня осуществлено на основе понятия ре-
зультирующего теплообмена; получены значения результирующей температуры  
𝑇𝑇�∞ рабочего тела и осредненного за рабочий цикл коэффициента теплоотдачи α�  
для отдельных зон огневой поверхности поршня, с применением которых рас-
считывается стационарное тепловое состояние поршня на данном режиме ра-
боты водородного двигателя: 

α� = 1
∆τ ∫ 𝛼𝛼𝛼𝛼𝛼𝛼τк

0 ;𝑇𝑇�∞ = ∫ α𝑇𝑇∞𝑑𝑑τ
𝜏𝜏к
0

∫ α𝑑𝑑τ 𝜏𝜏к
0

≝ 𝑇𝑇∞ рез.                             (9) 

После определения термических граничных условий с применением 3D-мо-
дели рабочего процесса, реализованного в 3D CRFD-кодах AVL-FIRE, модели-
рование теплового состояния поршня водородного ДВС в 3D-постановке осу-
ществляется на основе программного комплекса ANSYS (Рисунок 2). 

7 



В диссертации приведены температурные поля поршня водородного двига-
теля на всех исследуемых режимах в зависимости от значений коэффициента из-
бытка воздуха αв=var. На Рисунке 2 в качестве примера рассмотрен один из ре-
жимов. Анализ полученных результатов моделирования теплового состояния 
поршня, в частности изменения локальных температур tmax и tвк в зависимости от 
коэффициента избытка воздуха (Рисунок 2, в), показал, что при αв=1,163 значение 

 
а                                    б                                                  в 

Рисунок 2. Моделирование теплового состояния поршня: а - представление кон-
струкции поршня водородного двигателя в виде конечных элементов в результате 
генерации сетки в программе ANSYS; б - температурные поля (℃) поршня водо-
родного двигателя при n=3000 мин-1 и φзаж=15⁰ УПКВ; αв=2,195; в - изменения 
локальных температур: максимальной температуры поршня tmax и температуры в 
области верхнего компрессионного кольца tвк в зависимости от коэффициента из-
бытка воздуха при n=3000 мин-1 и φзаж=15⁰ УПКВ. 
локальной температуры в области верхнего компрессионного кольца tвк= 334℃ 
заметно превышает 250℃ - допустимую температуру, выше которой возникает 
опасность выгорания смазочного масла и образования нагара в кольцевых канав-
ках, приводящая к ухудшению компрессии и задиру поршня. Таким образом, ра-
бота водородного двигателя на обогащенных горючих смесях или на смесях, со-
став которых ближе стехиометрическому, не целесообразна не только с точки зре-
ния возникновения указанных выше аномальных процессов сгорания, но и с 
точки зрения теплового состояния поршня и надежности двигателя в целом. 

Четвертая глава посвящена анализу влияния регулируемых (угол опереже-
ния зажигания, частота вращения коленчатого вала) и конструктивных парамет-
ров (особенности конструкции поршня) на индикаторные показатели, на локаль-
ный нестационарный теплообмен в камере сгорания и на тепловое состояния 
поршня водородного двигателя. Изложен сравнительный анализ процесса тепло-
обмена в камерах сгорания водородного и бензинового двигателей. Установлено, 
что величина тепловых потерь в стенку в водородном двигателе по сравнению с 
базовым бензиновым ДВС имеет тенденцию роста, связанную с гашением пла-
мени при использовании традиционных углеводородных топлив.  

В заключительной главе диссертации особое внимание уделено сравнитель-
ному анализу индикаторных показателей рабочего цикла и процесса теплооб-
мена в камерах сгорания водородного и бензинового двигателей. Установлено, 
что при идентичных значениях регулируемых параметров n=idem и φзаж =idem, 
когда коэффициент избытка воздуха в бензиновом двигателе ɑв≈1, а в водород-
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ном двигателе имеет минимальное допустимое, ближе стехиометрическому зна-
чение (ɑв=1,266), максимальное давление pz, и соответственно максимальная 
температура Tz цикла в цилиндре водородного двигателя выше, чем у базового 
бензинового двигателя (Рисунки 3, а и 3, б).  

 
а                                                                  б                                              

Рисунок 3. Сопоставление рабочих процессов бензинового и водородного ДВС: 
а - индикаторные диаграммы и б - средние температуры в цилиндре бензинового 
(ɑв=1,049) и водородного (ɑв=1,266) ДВС при n=2500 мин-1.  

Исследования влияния угла опережения зажигания на локальный теплооб-
мен в камере сгорания и на тепловое состояния поршня водородного двигателя 
проводились на различных скоростных режимах работы двигателя при αв≈idem. 
Сравнительный анализ результатов, полученных для режимов n=3000 мин-1, αв 
=1,641 при φзаж=3⁰, 7⁰, 10⁰, 20⁰, 25⁰ УПКВ и n=5000 мин-1, αв =1,69 при φзаж=6⁰, 7⁰, 
9⁰, 12⁰, 14⁰ УПКВ показал, что при почти одинаковых коэффициентах избытка 
воздуха увеличение угла опережения зажигания в исследуемых диапазонах при-
водит к росту локальных температур в характерных зонах поршня независимо от 
скоростного режима работы двигателя. Это объясняется тем, что при ранних за-
жиганиях (т.е. при больших φзаж), несмотря на бедный состав смеси и относи-
тельно низкую ее температуру к моменту ее зажигания, воспламенение водорода 
происходит нормально, однако увеличение φзаж

 приводит к снижению начальной 
температуры смеси (температуры к моменту зажигания в процессе сжатия). Со 
снижением начальной температуры скорость фронта пламени замедляется и ог-
невая поверхность поршня более длительное время находится под тепловыми 
нагрузками со стороны высокотемпературного рабочего тела. Увеличение тепло-
вых нагрузок на всех поверхностях КС способствует увеличению локальных тем-
ператур деталей, образующих КС, в частности поршня. По результатам анализа 
экспериментальных и расчетных индикаторных диаграмм и соответствующих 
диаграмм изменения осредненной по объему цилиндра температуры были опре-
делены оптимальные значения угла опережения зажигания в зависимости от ре-
жима работы исследуемого водородного двигателя: φзаж=15⁰ УПКВ для режима 
n=3000 мин-1 и αв=1,641, и φзаж=14⁰ УПКВ для режима n=5000 мин-1 и αв=1,69. 
Для режима n=3000 мин-1 и αв=1,641 при оптимальном φзаж=15⁰, например, мак-
симальная температура поршня, наблюдаемая в центральной части его огневой 
поверхности, составляет tmax=360℃, а в области верхнего компрессионного 
кольца tвк=266℃, а для режима n=5000 мин-1, αв=1,69, φзаж=14⁰ tmax=408℃, 
tвк=297℃. Заметный рост указанных температур объясняется интенсификацией 
конвективного теплообмена в пристеночных слоях. Действительно, увеличение 
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частоты вращения коленчатого вала, а в результате и скорости перемещения 
поршня, приводящее к увеличению скорости перемещения высокотемператур-
ного рабочего тела в цилиндре, способствует интенсификацию конвективной 
теплоотдачи в пристеночных слоях в цилиндре, что подтверждается максималь-
ными значениями коэффициентов теплообмена во всех локальных зонах огневой 
поверхности поршня. Установлено, что с увеличением частоты вращения с 

n=3000 мин-1 до n=5000 
мин-1 при относи-
тельно небольших из-
менениях нагрузоч-
ного (с αв=1,64 до 
αв=1,69, соответ-
ственно) и регулиро-
вочного (с φзаж=15⁰ до 
φзаж=14⁰, соответ-
ственно) параметров, 
максимальные мгно-
венные значения коэф-

фициентов теплоотдачи αmax (τ) по отдельны зонам огневой поверхности поршня 
повышаются примерно на 12-17%. Изменение интенсивности конвекции на по-
верхности поршня в зависимости от скоростного режима работы водородного 
двигателя отражается на тепловое состояние поршня: увеличение частоты вра-
щения с n=3000 мин-1 до n=5000 мин-1 сопровождается ростом температур tmax и 
tвк на 47℃ и 31℃, соответственно (Рисунок 4).  

Особенность конструкции поршня исследуемого водородного двигателя, 
унаследовавшая от базового бензинового двигателя – наличие на огневой по-
верхности выточек, расположенных под впускными клапанами (Рисунки 5, а и 5, 
б). В данной работе были проведены численные эксперименты по исследованию 
влияния указанных выточек на локальный теплообмен и тепловое состояния 
поршня. С целью исследования роли выточек на распределение термических гра-
ничных условий на поверхности поршня и на его тепловое состояние в целом 
проведем сопоставление результатов моделирования конвективной теплоотдачи 
на характерных периферийных зонах 65 и 71 огневой поверхности поршня (Ри-
сунок 5, а). При оптимальном угле опережения зажигания φзаж=15⁰ УПКВ в зоне 
65, где расположена выточка для клапана, имеем αmax=1316 Вт/(м2 К). В зоне 71 
(плоская поверхность без выточки), расположенной точно на таком же расстоя-
ние от центра поршня, как и зона 65 (симметрично по отношению оси поршня), 
максимальное мгновенное значение коэффициента теплоотдачи   достигает зна-
чения αmax=1337 Вт/(м2 К), т.е. разница составляет примерно 2%. Кроме того, со-
поставление диаграмм изменения коэффициентов теплоотдачи, полученных для 
различных углов опережения зажигания φзаж=var, указывает на аналогию между 
характерами протекания процесса самого теплообмена в зонах 65 и 71. Сопостав-
ление осредненных за цикл коэффициентов теплоотдачи в этих зонах и соответ-
ствующих результирующих температур также показывают, что наличие выточек 

  
Рисунок 4. Тепловое состояние поршня при n=3000 
мин-1, αвоз.=1,64, 𝜑𝜑 = 15° (слева) и при n=5000 мин-1, 
𝛼𝛼воз.=1,69, 𝜑𝜑 = 14° (справа). 
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практически не влияет на величину термических нагрузок. Незначительная раз-
ница между коэффициентами теплоотдачи в указанных зонах позволяет заклю-
чить, что турбулентность рабочего тела, генерированная геометрической фор-
мой и размерами выточек, невелика и не приводит к заметной интенсификации 
теплоотдачи в зоне 65. Для окончательного выяснения роли выточек на огневой 
поверхности поршня в интенсификации локального теплообмена в КС был про-
веден численный эксперимент по исследованию конвективного теплообмена для 
поршня без выточек (Рисунок 5, в). В результате анализа полученных данных 
установлено, что ни термические граничные условия, ни температурные поля, 
для обоих поршней на идентичных режимах работы незначительно отличаются, 
и что указанное на Рисунке 5 отличие в их конструкциях на термические 
нагрузки со стороны рабочего тела и на тепловое состояние поршня влияет не-
существенно.  

Важным конструктивным фактором, влияющим на локальный теплообмен 
в камере сгорания и на тепловое состояние поршня водородного двигателя явля-
ется зазор (щель) между поверхностями жарового пояса поршня и гильзы, рас-
положенный выше верхнего компрессионного кольца (Рисунок 6, а). В данной 
диссертации предложена, а в последствии доказана по результатам измерения 
локального нестационарного теплового потока на поверхности жарового пояса 
поршня и моделирования теплового состояния поршня гипотеза о том, что про-
никновение водородно-воздушного пламени в указанной щели приводит к до-
полнительной отдачи тепла к поршню, т.е. к повышению тепловых потер при 
замене традиционных моторных топлив на водород. Последний факт, неодно-
кратно наблюдаемый в экспериментальных исследованиях разных авторов (T. 
Shudo и др.), однако не имеющий до настоящего времени научного обоснования, 
впервые детально исследован, раскрыт и обоснован на основе предложенной ги-
потезы. 

По результатам исследования особенности горения водорода, в том числе и 
в области противопожарной безопасности, известно, что критическое (предель-
ное) значение расстояния гашения пламени водородно-воздушной смеси, т.е. ве-
личина зазора, куда не может проникнуть пламя составляет 𝑙𝑙кр Н2 ≈ 0,125 мм, что 

   
а                                            б                                              в 

Рисунок 5. Твердотельная модель поршня: а - расположение зон на огневой по-
верхности поршня; б - реальная конструкция поршня базового и водородного 
двигателей с выточками; в - упрощенная конструкция поршня без выточек. 
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почти в два раза меньше по сравнению с зазором на исследуемом эксперимен-
тальном двигателе в горячем состоянии (𝑙𝑙≈0,2 мм). Очевидно, что в таком случае 
в указанном зазоре имеется полноценное горение водорода, сопровождаемое ин-
тенсивным теплообменом. Для бензино-воздушной смеси критическое расстоя-
ние гашения пламени 𝑙𝑙кр бенз ≈ 0,5мм, что значительно больше с реальным зазо-
ром при горячем экспериментальном двигателе (𝑙𝑙≈0,2 мм), пламя бензино-воз-
душной смеси в зазоре гаснет, т.е. сгорание бензина отсутствует, а температура 
и интенсивность конвективной теплоотдачи падает. Очевидно, что тепловые по-
тери в стенку камеры сгорания в таком случае будут меньше, чем в водородном 
двигателе. Измерения нестационарного теплового потока на поверхности жаро-
вого пояса поршня, проведенные в МГТУ им. Н.Э. Баумана на дизеле КамАЗ-
7405, для которого величина указанного зазора в горячем состоянии l≈0,35 мм, а 
критическое расстояние гашения пламени примерно такое же, как для бензино-
воздушной смеси lкр диз≈0,5 мм, показали, что суммарный за цикл тепловой поток 
(в результате отвода и подвода теплоты) примерно равен нулю. Это указывает на 
то, что в случае использования традиционных углеводородных топлив в зазор 
пламя не проникает и теплообмен в зазоре отсутствует.  

На Рисунке 6, б приведено расположение локальных зон на огневом днище 
поршня, используемое и раньше для моделирования теплового состояния 
поршня, и на боковой и внутренней поверхности поршня, где зона 73 представ-
ляет собой поверхность его жарового пояса.  С целью оценки роли гашения пла-
мени в процессе теплообмена в камере сгорания и оценки теплового состояния 
поршня водородного двигателя были проведены два варианта численных экспе-
риментов: 1. Пламя водородно-воздушной смеси в щели между поршнем и зер-
калом цилиндра выше первого компрессионного кольца не проникает, т.е. имеет 
место гашение пламени, граничное условие 3-его рода имеет вид 𝛼𝛼� ≈ 0; 2. Пламя 
водородно-воздушной смеси проникает в щели между поршнем и зеркалом ци-
линдра выше первого компрессионного кольца, т.е. в щели идут процессы сгора-
ния, тепловыделения и теплообмена. В таком случае интенсивность теплоотдачи 
на поверхности жарового пояса поршня в первом приближении можно задавать 
примерно такую, как на периферийной зоне 70 огневого днища поршня (см. Ри-
сунок 5, а). В случае без гашения пламени интенсивная теплоотдача увеличивает 
тепловые потери в стенку, повышая при этом локальные температуры в харак-
терных областях поршня водородного двигателя (Рисунки 6, в и 6, г). 

 
а                                   б                           в                                 г 

Рисунок 6. Численные эксперименты при гашении пламени и без гашения пла-
мени: а - конструкция поршня бензинового двигателя, конвертированного на во-
дород (высота жарового пояса поршня, выделенная цветом, составляет 5,5 мм); б 
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- расположение зон на боковой поверхности поршня (зона 73 - поверхность жа-
рового пояса поршня); в - тепловое состояние поршня водородного двигателя на 
режиме n=3000 мин-1 с нулевыми граничными условиями (𝛼𝛼� ≈ 0) на поверхности 
жарового пояса, имитирующими гашение пламени; г - тепловое состояние 
поршня водородного двигателя на режиме n=3000 мин-1 с граничными условиями 
( 𝛼𝛼�=789 Вт/(м2∙К) и Т∞ рез=1165℃) на поверхности жарового пояса, имитирую-
щими проникновение пламени в щели. 

Следует заметить, что при моделировании теплонапряженного состояния 
поршней традиционных ДВС с целью получения совпадения измеренных и рас-
четных локальных температур на поверхности жарового пояса обычно без объ-
яснения причин задают нулевые (или близкие к ним) значения тепловых потоков. 
Тенденция снижения объема указанного зазора, заметная в современных двига-
телях, осуществляемая поднятием верхнего компрессионного кольца как можно 
выше и нацеленная на снижение количества не сгоревших углеводородов СН, 
указывает на важность исследования вопросов тепловыделения и теплообмена в 
зазоре. Следует отметить также, что увеличению тепловых потерь в камере сго-
рания водородного двигателя по сравнению с традиционным бензиновым двига-
телем способствует еще и тот факт, что в водородном двигателе имеет место пол-
ная декарбонизация продуктов сгорания и на тепловоспринимающих поверхно-
стях не происходит образование слоя нагара, имеющего низкую теплопровод-
ность и играющего роль естественного теплоизолятора при сгорании углеводо-
родных топлив.  

 
ОСНОВНЫЕ ВЫВОДЫ ПО ДИССЕРТАЦИОННОЙ РАБОТЕ 

 
1. Для определения термических нагрузок на основные детали, в частности 

на поршень, водородного двигателя с внешним смесеобразованием разработана 
и реализована 3D-математическая модель рабочего процесса и локального неста-
ционарного теплообмена в камере сгорания. Модель основана на фундаменталь-
ных уравнениях переноса типа Навье-Стокса, записанных в форме Рейнольдса. 
Система уравнений замыкается k-ζ-f - моделью турбулентности, предназначен-
ной для моделирования внутрицилиндровых процессов в ДВС. Для моделирова-
ния процесса сгорания водорода обосновано применение расширенной модели 
когерентного пламени (ECFM-модели), а для моделирования теплообмена в по-
граничном слое - использование модели на основе пристеночных функций. Реа-
лизация модели проводилась с применением 3D CRFD-кода AVL FIRE, а вери-
фикация - путем сравнения расчетных и экспериментальных индикаторных диа-
грамм, снятых на различных режимах работы экспериментального водородного 
двигателя. Задача определения термических граничных условий для моделиро-
вания теплового состояния деталей водородного двигателя с внешним смесеоб-
разованием в такой постановке решается впервые. 

2. Стендовыми испытаниями экспериментального водородного двигателя, 
проведенными во всем диапазоне изменения скоростных и нагрузочных режи-
мов, были определены его индикаторные и эффективные показатели. Установ-
лено, что ограничение изменений коэффициента избытка воздуха пределами 
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αв=1,5-2,4 обеспечивает нормальную, стабильную работу двигателя без пропус-
ков зажигания и аномальных явлений (обратная вспышка, преждевременное за-
жигание, детонация).  

3. По результатам экспериментальных исследований водородного (αв=1,266) 
и базового бензинового (αв=1,049) двигателей установлено, что при идентичных 
скоростных режимах значения максимальной температуры цикла и температуры 
выпускных газов, а в целом температурный уровень рабочего процесса при ра-
боте на водороде выше, чем на бензине. Температура остаточных газов, превы-
шающая температуру самовоспламенения водорода, может стать причиной по-
явления указанных аномальных явлений. Роль температуры поверхности камеры 
сгорания в возникновении этих явлений в водородном двигателе ничтожно мала. 
        4. Численные эксперименты по исследованию влияния коэффициента из-
бытка воздуха на локальный теплообмен в камерах сгорания и тепловое состоя-
ние поршней водородного (ɑв ≥ 1,5) и базового бензинового  (ɑв ≈ 1,0) двигателей 
проведены с применением соответствующих значений результирующей темпе-
ратуры  𝑇𝑇�∞ рабочего тела и осредненного за рабочий цикл коэффициента тепло-
отдачи α�, определенных на основе результатов 3D-моделирования нестационар-
ных термических нагрузок на отдельные зоны огневой поверхности поршня. 
Установлено, что работа исследуемого водородного двигателя на обедненных 
смесях ɑв ≥ 1,5 не только предотвращает аномальные процессы сгорания, что 
было подтверждено экспериментальными исследованиями, но и существенно 
снижает тепловые нагрузки на основные детали, в частности, на поршень. 

5. Центральное расположение свечи зажигания, конструкция КС и поршня 
способствуют возникновению высоких термических нагрузок в центральной ча-
сти огневой поверхности поршня. Снижение этих нагрузок возможно обедне-
нием водородно-воздушной смеси: например, в указанной части поверхности 
поршня при почти двукратном увеличении коэффициента избытка воздуха с 
αв=1,163 до αв=2,195 максимальное значение нестационарного коэффициента 
теплоотдачи снижается с αmax=1555 Вт/(м2К) до αmax=1356 Вт/(м2К), т.е. при-
мерно на 12%. На периферийных зонах разница составляет 10%.  

6. При приближении состава водородно-воздушной смеси к стехиометриче-
скому (αв=1,163) максимальная величина локальной температуры поршня в цен-
тральной части огневого днища на режиме n=3000 мин-1 достигает tmax=407,4℃.  
Обеднение смеси до αв=1,641 снижает эту температуру до tmax=361℃, а обедне-
ние до αв=2,195 приводит к tmax=321℃. Значение локальной температуры поршня 
в области верхнего компрессионного кольца, например, на том же режиме при 
αв=1,163 достигает tвк=334℃, что заметно превышает 250℃ - допустимую тем-
пературу, выше которой возникает опасность выгорания минерального смазоч-
ного масла и образования нагара в кольцевых канавках, приводящая к ухудше-
нию компрессии и задиру поршня.  Обеднение смеси до αв=2,195 снижает эту 
температуру до tвк=239℃.   

7. Значение минимальной локальной температуры поверхности поршня, 
имеющееся в нижней части его юбки, на всех исследуемых режимах работы во-
дородного двигателя находится в пределах tmin=75-78℃. Тем не менее, с целью 
снижения локальных температур на тепловоспринимающей поверхности 
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поршня на режимах ɑв≤1,5 целесообразно принять меры для усиления теплоот-
вода от огневого днища. В случае работы при ɑв≈2,0 и, тем более, при ɑв>2,0 
принятие мер для интенсификации охлаждения поршня не требуется. 

8. Тепловое состояние поршня в зависимости от угла опережения зажигания 
моделировалось на режимах работы водородного двигателя: n=3000 мин-1 и 
n=5000 мин-1 при почти одинаковых коэффициентах избытка воздуха (αв=1,641 
и αв=1,69 соответственно). Увеличение φзаж в исследуемом диапазоне приводит 
к росту локальных температур в характерных зонах поршня независимо от ско-
ростного режима работы двигателя. 

9. При относительно несильном   обеднении смеси (ɑв=1,266) тепловые 
нагрузки в водородном двигателе выше, чем у базового бензинового двигателя 
(ɑв≈1). Более сильное обеднение смеси (ɑв>1,5) приводит к обратной картине - 
тепловые нагрузки в водородном двигателе уменьшаются по сравнению с бензи-
новым. Влияние степени РОГ z на тепловое состояние поршня несущественно: 
введение РОГ (z=15%) на режиме ɑв=1,56 и n=1000 мин-1, например, по сравне-
нию с z=0 приводит к снижению максимальной локальной температуры поршня 
(Tmax=300⁰C) в центральной части огневого днища на 3-5℃, что объясняется сни-
жением коэффициента избытка воздуха до ɑв=1,42.    

10. Наличие подклапанных выточек (углублений) на огневом днище поршня 
экспериментального водородного двигателя не способствуют существенному 
повышению локальной пристеночной турбулентности рабочего тела, и не оказы-
вают заметное влияние на локальные тепловые нагрузки и на теплового состоя-
ние поршня.  

11. Оценка теплоотдачи в стенку КС в исследуемом водородном двигателе 
подтвердила факт, ранее наблюдаемый в экспериментальных исследованиях раз-
ных авторов (T. Shudo и др.), однако не имеющий до настоящего времени науч-
ного обоснования - почему замена традиционных топлив на водород приводит к 
дополнительным тепловым потерям. В диссертации выдвинута и по результатам 
моделирования и измерения нестационарного теплового потока на поверхности 
поршня в области верхнего компрессионного кольца доказана гипотеза о том, 
что пламя при горении водорода проникает в зазоре между поверхностями жа-
рового пояса поршня и гильзы, а в случае горения бензина (или дизельного топ-
лива) в зазоре происходит гашение пламени.  

12. Установлено, что критическое значение расстояния гашения пламени во-
дородно-воздушной смеси, т.е. величина зазора, куда не может проникнуть 
пламя 𝑙𝑙кр Н2 ≈ 0,125 мм, что почти в два раза меньше по сравнению с зазором на 
исследуемом экспериментальном двигателе в горячем состоянии (𝑙𝑙≈0,2 мм) и в 
зазоре идет процесс горения водорода, сопровождаемый интенсивным теплооб-
меном. Для бензино-воздушной смеси 𝑙𝑙кр бенз ≈ 0,5 мм и пламя в зазор гаснет. 
Отсутствие интенсивной теплоотдачи в зазоре приводит к снижению тепловых 
потерь в бензиновом двигателе. 
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