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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Концепция коллективных возбуждений играет одну из цен­
тральных ролей в современной физике конденсированного состояния, так как
позволяет понять природу структурных, механических, электромагнитных и
термодинамических свойств конденсированных сред и явлений переноса в них.
По этой причине, анализ спектров элементарных возбуждений важен для ре­
шения различных проблем физики конденсированного состояния, химической
физики, физической химии, физики плазмы, физики мягкой материи и наук о
материалах.

В жидкостях отсутствует дальний порядок, но элементарные коллектив­
ные возбуждения все еще существуют. В отличие от кристаллов, структура эле­
ментарных возбуждений в жидкостях главным образом определяется эффек­
тами ангармонизма и разупорядоченности структуры. При этом, в жидкостях
нет малого параметра, связанного с ангармонизмом, что не позволяет приме­
нять методы теории возмущений. Более того, в отличие от кристаллов, спектры
элементарных возбуждений в жидкостях не обладают периодической структу­
рой в обратном пространстве, что обусловлено потерей трансляционного поряд­
ка в жидкостях. В результате необходимо анализировать спектры элементар­
ных возбуждений во всем обратном пространстве, а не только в первой зоне
Бриллюэна, как это возможно в случае кристаллов. Упомянутые особенности,
стали причиной того, что элементарные возбуждения в жидкостях остаются
менее изучены, чем в кристаллах, несмотря на определенные успехи в рамках
исследований при помощи методов обобщенной гидродинамики, метода квази­
кристаллического приближения и его модификаций. Важно отметить, что эти
методы в лучшем случае учитывают эффекты ангармонизма феноменологиче­
ски, что не позволяет изучить роль характера взаимодействия и является их
существенным недостатком.

Интерес к спектрам элементарных возбуждений в жидкостях существен­
но возрос в последние годы в контексте изучения взаимосвязи структурных,
динамических и термодинамических свойств в различных жидкостях, в частно­
сти в контексте изучения перехода от режима жидко-подобной к газо-подобной
динамике (линия Френкеля), а так же в контексте экспериментов с неупругим
нейтронным и рентгеновским рассеянием.

Значительная доля исследований коллективной динамики проводится с ис­
пользованием методов молекулярной динамики (МД), которые позволяют легко
рассчитать распределение интенсивности спектров элементарных возбуждений
как в кристаллах, так и в жидкостях. Существуют различные методы пост­
обработки данных с целью получения дисперсионных зависимостей и установ­
ления времени жизни элементарных возбуждений, но систематического сравне­
ния этих методов с оценкой их точности и установлением границ применимости
ранее не проводилось. Спектры элементарных возбуждений в жидкостях суще­
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ственно ангармоничны, особенно в коротковолновой области, что делает воз­
можным «смешение» и перераспределение спектральных интенсивностей меж­
ду продольными и поперечными модами. В действительности, это явление на­
блюдается экспериментально, и даже позволило измерить дисперсионные зави­
симости, соответствующие поперечным элементарным возбуждениям в жидко­
стях. Для правильного учета этого явления необходима разработка соответству­
ющих методов анализа, но этот вопрос остается слабо изученным.

Экспериментальные данные являются ключевым элементом при разработ­
ке новых расчетных методов. Одним из основных экспериментальных инстру­
ментов изучения коллективных возбуждений в конденсированных средах явля­
ется неупругое нейтронное и рентгеновское рассеяние. Однако, в случае жид­
костей оно не способно дать полную информацию о структуре спектров и ди­
намике движения отдельных частиц. В связи с этим, особую ценность могут
представлять эксперименты с комплексной пылевой плазмой – слабо ионизи­
рованным газом, содержащим заряженные конденсированные микрочастицы,
чьи индивидуальные траектории могут быть отслежены оптически. Благода­
ря тому, что (слабодемпфированная) динамика микрочастиц описывается урав­
нениями Ланжевена, эксперименты с комплексной (пылевой) плазмой предо­
ставляют мощный инструмент для анализа коллективной динамики в сильно
неидеальных многочастичных системах (жидкостях). В частности, при помощи
комплексной (пылевой) плазмы экспериментально было изучены: равновесное и
неравновесное плавление, микрофизика жидкостей, тепловая активация и рас­
пространение фронтов неравновесного правления, термоакустическая неустой­
чивость в жидкостях и кинетика кристаллизации. Затухание движения отдель­
ных частиц в комплексной (пылевой) плазме является слабым и, благодаря
возможности экспериментального получения жидких состояний, комплексная
(пылевая) плазма позволяет экспериментально изучать спектры возбуждений
в жидкостях в различных режимах взаимодействия.

Цель диссертационной работы – разработка подходов к расчету спек­
тров элементарных возбуждений с учетом эффектов ангармонизма в классиче­
ских жидкостях с взаимодействиями различной мягкости и в широком диапа­
зоне параметров состояния.

Научная новизна диссертационной работы:

1. Впервые показано, что анализ спектров элементарных возбуждений в жид­
костях на основе модели двух затухающих гармонических осцилляторов
позволяет эффективно восстанавливать дисперсионные зависимости в со­
стояниях вдали от линии плавления.

2. Впервые проанализированы различные методы восстановления дисперси­
онных зависимостей жидкостей вдали от линии плавления, включая ана­
лиз положения максимумов, раздельный анализ мод, совместный анализ
мод, анализ с учетом теории антикроссинга мод в жидкости. Установлены
границы их применимости.
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3. Получены новые закономерности изменения положения границы устойчи­
вости поперечных мод в жидкости от параметра неидеальности в широком
диапазоне параметров состояния для разных модельных потенциалов вза­
имодействий, соответствующих: благородным газам, однокомпонентной
плазме, ионам или коллоидным частицам на различных интерфейсах.

4. Разработана теория антикроссинга мод в простых жидкостях. Показано,
что в простых жидкостях происходит гибридизация продольных и попе­
речных мод (при их пересечении) с образованием новых низко- и высоко­
частотных гибридных мод.

5. Систематически рассчитаны термодинамические характеристики двумер­
ных системе Юкавы в широком диапазоне параметров состояния. Рассчи­
таны фазовые диаграммы двумерных систем Юкавы разной мягкости с
дополнительным изотропным дипольным притяжением.

6. Впервые в результате МД моделирования показано, что в системах с эф­
фективными невзаимными парными взаимодействиями могут наблюдать­
ся диссипативные фазовые переходы. Разработан и программно реализо­
ван балансовый подход, позволяющий теоретически рассчитывать петли
гистерезиса и диссипативные фазовые диаграммы в системах с невзаим­
ными взаимодействиями.

7. Предложен новый модельный потенциал взаимодействий в комплексной
(пылевой) плазме, учитывающий плазменные следы и позволяющий вы­
полнять моделирование методом МД как кристаллических, так и жид­
ких состояний. Показано, что предложенная модель взаимодействия поз­
воляет воспроизводить все ключевые особенности теплового активацион­
ного поведения комплексной (пылевой) плазмы в экспериментах, в частно­
сти распространение фронтов неравновесного плавления и термоакусти­
ческую неустойчивость.

Положения, выносимые на защиту:

1. Метод восстановления дисперсионных зависимостей в простых жидкостях
в широком диапазоне параметров состояния с учетом эффектов сильного
ангармонизма.

2. Результаты измерения зависимости размеров области неустойчивых попе­
речных мод (в обратном пространстве) в простых жидкостях в широком
диапазоне параметров состояния на основе компьютерного моделирова­
ния.

3. Результаты расчета термодинамических свойств двумерных систем Юка­
вы в широком диапазоне параметров состояния, а также фазовых диа­
грамм двумерных систем Юкавы разной мягкости с дополнительным изо­
тропным дипольным притяжением.
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4. Балансовый подход для теоретического поиска стационарных состояний
и расчета диссипативных фазовых диаграмм в многочастичных диссипа­
тивных системах с невзаимными взаимодействиями.

5. Модель парных взаимодействий микрочастиц в комплексной (пылевой)
плазме, учитывающая плазменные следы и применимая для моделирова­
ния жидких состояний и активационного теплового поведения.

Методология и методы исследования. Основу решений сформулиро­
ванных задач составляют современные методы статистической физики, физики
конденсированного состояния, химической физики, физики мягкой материи и
компьютерного моделирования. Расчеты методом МД выполнены в открытых
программных пакетах LAMMPS и HOOMD-Blue. Пост-обработка результатов
моделирования и экспериментов выполнена с использованием программных ко­
дов, реализованных на C++/CUDA автором настоящей диссертации.

Достоверность результатов подтверждается корректностью использова­
ния методов физики конденсированного состояния и методов вычислительной
физики (в частности методов молекулярной динамики); полученные результаты
согласуются с ранее известными результатами, представленными в литературе;
результаты моделирования методом молекулярной динамики воспроизводимы
и устойчивы к изменениям основных параметров. Кроме того, достоверность
результатов подтверждается согласием результатов, полученных на основе раз­
ных подходов, включающих теоретические, вычислительные и эксперименталь­
ные.

Личный вклад автора состоит в подготовке программных кодов для
проведения расчетов, подготовке и проведении расчетов, в пост обработке ре­
зультатов моделирования методом молекулярной динамики, в участии в пост­
обработке экспериментальных результатов, разработке теоретических моделей,
сопоставлении результатов теории, моделирования и экспериментов и последую­
щем анализе и интерпретации результатов. Все основные результаты получены
автором лично, либо при непосредственном участии.

Теоретической значимостью обладает ряд результатов настоящей дис­
сертации. В частности, предложенный метод анализа мод в жидкостях с уче­
том эффектов ангармонизма, позволяет изучать структуру спектров элемен­
тарных возбуждений в жидкостях вдали от линии плавления, а следовательно
устанавливать новые закономерности связи различных динамических, термо­
динамических и транспортных свойств жидкостей. Другим важным результа­
том является разработанная теория антикроссинга мод в простых жидкостях,
которая объясняет структуру дисперсионных зависимостей, их перестройку и
формирование гибридных мод, что необходимо для корректного анализа дан­
ных экспериментов и моделирования методом МД. Эти результаты важны для
понимания физики жидкостей различной природы, от простых жидкостей и
сжиженных благородных газов и до жидких металлов, молекулярных и ком­
плексных жидкостей, жидких плазм и других родственных конденсированных
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систем. Полученные результаты могут оказаться полезными для дальнейшей
разработки теории жидкого состояния. Результаты исследования систем с невза­
имными взаимодействиями открывают новые перспективы для понимания ди­
намики открытых неравновесных многочастичных систем, а также сценариев
диссипативных фазовых переходов, наблюдаемых в них. Из-за широкой распро­
страненности подобных систем в природе, данные результаты могут оказаться
полезными для междисциплинарных исследований на стыке таких областей как
физика, химия, биология, физика мягкой материи, изучение коллективных яв­
лений в мультиагентных системах и активной материи.

Практическая значимость. С практической точки зрения ценностью об­
ладают метод анализа дисперсионных зависимостей в простых жидкостях и ба­
лансовый подход к расчету стационарных состояний систем с невзаимными эф­
фективными взаимодействиями. Последний позволяет выполнять построения
петель гистерезиса и диссипативных фазовых диаграмм в системах с невзаим­
ными взаимодействиям с существенно более низкими вычислительными затра­
тами, чем при прямом МД моделировании. Практической ценностью обладают
результаты расчетов термодинамических параметров двумерных систем Юка­
вы в широком диапазоне параметров состояния, а также фазовые диаграммы
систем Юкавы разной мягкости с дополнительным изотропным дипольным при­
тяжением. Практической ценностью обладает предложенная модель взаимодей­
ствий в комплексной (пылевой) плазме, которая позволяет выполнять модели­
рование методом МД данной системы и воспроизводить все основные явления в
экспериментах с комплексной (пылевой) плазмой, связанные с активационным
тепловым поведением.

Результат диссертационной работы представляет собой решение ак­
туальной задачи физики конденсированного состояния – разработки новых под­
ходов к анализу спектров элементарных возбуждений в простых жидкостях и
экспериментах с кинетическим уровнем разрешения.

Апробация работы. Основные результаты работы были представлены на
следующих конференциях, симпозиумах и семинарах: Международная научная
школа «Bad Honnef School on Physics of Strongly Coupled Systems» (Germany,
Bad Honnef, 2019); Международная конференция «16th Conference of the Interna­
tional Association of Colloid and Interface Scientists» (Netherlands, Rotterdam,
2018); Международная конференция «ФизикА.СПб» (ФТИ им. А.Ф. Иоффе,
Санкт-Петербург, 2017, 2018); Международная семинар «Фундаментальные и
прикладные проблемы фотоники и физики конденсированного состояния» (МГ­
ТУ им. Н.Э. Баумана, Москва, 2018); Международный симпозиум «Progress In
Electromagnetics Research Symposium» (ИТМО, Санкт-Петербург, 2017); Меж­
дународные семинары «Фундаментальные и прикладные проблемы физики мяг­
кой материи» (МГТУ им. Н.Э. Баумана, Москва, 2016); Всероссийская конфе­
ренция «Проблемы физики твердого тела и высоких давлений» (ИФВД им.
Л.Ф. Верещагина РАН, ФИАН, пос. Вишневка, 2016, 2018); Международный
симпозиум с элементами научной школы «Комплексная (пылевая) плазма. Меж­
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дисциплинарные исследования» (МГТУ им. Н.Э. Баумана, Москва, 2016).
Отдельные результаты работы нашли отражение в учебной дисциплине,

читаемой студентам МГТУ им. Н.Э. Баумана: «Физические процессы в микро­
структурах».

Публикации. Основные результаты диссертационной работы опублико­
ваны в 15 научных работах в журналах, рекомендованных ВАК РФ для пуб­
ликации основных результатов научных работ, в том числе индексируются в
Scopus / Web of Science), а также в 2 статьях в сборниках трудов конференций
(индексируются Scopus/WoS).

Среди научных изданий, в которых опубликованы результаты диссерта­
ции – ведущие мировые журналы (входящие в Q1, WoS/Scopus), как Physical
Review Letters [1], Soft Matter [2,3], The Journal of Chemical Physics [4-10], Physical
Review E [11,12], Langmuir [13], Journal of Physics-Condensed Matter [14].

О высоком интересе научного сообщества и актуальности результатов дис­
сертации свидетельствует то, что статья [4] вошла в коллекцию «Editors’ Choice
2017» The Journal of Chemical Physics. Всего соискатель имеет 22 научные пуб­
ликации, индексируемые в Scopus / Web Of Science.

Структура и объем диссертации. Диссертация состоит из введения,
4 глав и заключения, содержит 168 страниц, 39 рисунков, 9 таблиц. Список
литературы включает 300 источников.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

ВО ВВЕДЕНИИ кратко обосновывается актуальность работы, форму­
лируется цель, перечисляются положения, выносимых на защиту, указывается
научная новизна, достоверность, фундаментальная и практическая значимость
результатов работы, личный вклад автора, апробация работы и содержание по
главам.

Глава 1 является обзорной. В разделе 1.1 кратко рассматриваются кол­
лективные возбуждения в кристаллах, гармоническое приближение для рас­
чета дисперсионных зависимостей и термодинамических свойств кристаллов.
Кратко излагается интерполяционный метод кратчайших графов, демонстри­
рующий связь спектров возбуждений с парными корреляционными функция­
ми классических кристаллов. В заключении раздела обсуждаются ангармониче­
ские эффекты и динамическая устойчивость кристаллов. В разделе 1.2 рассмат­
риваются коллективные возбуждения в жидкостях. Кратко излагается один из
теоретических подходов к расчету дисперсионных зависимостей в простых жид­
костях. В разделе 1.3 кратко рассматриваются экспериментальные подходы к
изучению спектров элементарных возбуждений в конденсированных системах.
В завершении главы формулируются цель и задачи диссертации.

Глава 2 посвящена изучению элементарных возбуждений в простых дву­
мерных и трехмерных жидкостях в широком диапазоне параметров. В разде­
ле 2.1 приводится описание проводимых расчетов методом МД. В разделе 2.2
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анализируется вопрос точности восстановления дисперсионных зависимостей в
жидкостях, рассматривается проблема измерения размеров области обратного
пространства, соответствующей неустойчивым поперечным модам. На Рис. 1
представлены результаты расчет дисперсионных зависимостей на основе раз­
дельного анализа мод в двумерной жидкости частиц с дипольным отталкива­
нием. В разделе 2.3 излагается теория антикроссинга мод в простых жидкостях.
Показано, что эффекты ангармонизма в жидкостях приводят к возникновению
гибридных высокочастотных и низкочастотных мод (вместо продольных и попе­

Рис. 1. Спектры элементарных возбуждений в двумерной IPL3 жидкости: при
Γ = 56 a)-с) и Γ = 28 d)-e). Панели a), d) и c), e) представляют распреде­
ления 𝐶𝐿(𝑞, 𝜔) и 𝐶𝐿,𝑇 (𝑞, 𝜔) соответственно в цветовом формате. Круги –
значения 𝜔𝐿,𝑇 (𝑞), полученные на основе раздельного анализа мод. Пунк­
тирные красные линии – аппроксимации 𝜔𝐿(𝑞) ≃

√︀
2𝑇/𝑚. Панели c) и

f) – сопоставление данных МД (символы) и QCA дисперсионных зави­
симостей (линии) [11]
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Рис. 2. Динамические и термодинамические свойства 3D жидкости Леннарда­
Джонса: a)-c) Дисперсионные соотношения 𝜔𝐿,𝑇 (𝑞). d) Удельная тепло­
емкость 𝐶𝑉 (𝑇 ). e) Автокорреляционные функции скорости (VAF). f)
Температурные зависимости 𝑞* и 𝑞𝑔, полученные с использованием моде­
ли двух осцилляторов (оранжевые круги) и максимумов ее поперечной
части 𝐶𝑇 (𝑞, 𝜔) (черные пятиугольники). Черные пунктирные линии –
оценка положения границы первой псевдозоны Бриллюэна

речных), что должно корректно учитываться при расчете дисперсионных зави­
симостей. В разделе 2.4 систематически изучаются коллективные возбуждения
в различных двумерных и трехмерных жидкостях на основе моделирования ме­
тодом МД. Особое внимание уделяется изучению зависимости размеров 𝑞𝑔 обла­
сти в обратного пространстве, соответствующей неустойчивым поперечным мо­
дам, от параметра неидеальности. Полученные результаты (в частности Рис. 2)
обсуждаются в контексте изучения перехода от состояний с жидко-подобной к
газо-подобной динамике, который известен как кроссовер Френкеля. В разделе
2.5 обобщаются основные результаты главы.

Глава 3 посвящена изучению термодинамических свойств двумерных си­
стем Юкавы. В разделе 3.1 приводится описание проводимых МД расчетов.
В разделе 3.2 представлены результаты систематических расчетов термодина­
мических свойств двумерных систем частиц, взаимодействующих посредством
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Рис. 3. Фазовые диаграммы двумерной системы Юкавы различной мягкости с
дополнительным регулируемым изотропным дипольным притяжением.
Сплошные синие линии соответствуют бинодалям, CP и TP указывают
на критические и тройные точки, соответственно [4]

потенциала Юкавы, в широком диапазоне параметров состояния. В разделе
3.3 представлены результаты анализа экспериментов с жидкой комплексной
(пылевой) плазмы. Показано, что экспериментально полученные спектры эле­
ментарных возбуждений в жидкости хорошо согласуются с результатами моде­
лирования методом МД с использованием потенциала Юкавы. В разделе 3.4
представлены результаты расчета фазовых диаграмм для двумерных систем
Юкавы с изотропным дипольным притяжением. На Рис. 3 представлены фа­
зовые диаграммы двумерных систем Юкавы различной жесткости с дополни­
тельным изотропным дипольным притяжением, рассчитанные на основе МД и
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Рис. 4. Нормированные фазовые диаграммы. Цветами представлены фазовые
диаграммы с Рис. 3, температуры которых нормированы на свои крити­
ческие значения, а плотности нормированы с использованием радиуса
Баркера-Хендерсона [4]

Монте-Карло. На Рис. 4 представлены диаграммы с Рис. 3 в нормированных ко­
ординатах: эффективные температуры нормированы на критические темпера­
туры соответствующих диаграмм, а плотности нормированы с использованием
радиуса Баркера-Хендерсона. В разделе 3.5 обобщаются основные результаты
главы.

Глава 4 посвящена рассмотрению комплексной пылевой плазмы, как экс­
периментальной системы, допускающей измерение спектров элементарных воз­
буждений в жидкостях. В разделе 4.1 рассматриваются особенности динамики
двумерных систем с невзаимными взаимодействиями. Показано, что в системах
со скалярной радиально зависимой невзаимностью стационарное состояние си­
стемы определяется балансом между мощностями диссипации и энерговыделе­
ния из-за невзаимности. Установлено, что в таких системах, результирующие
стационарные состояния системы зависят от начальных условий и образуют
петли гистерезиса, что свидетельствует о диссипативном фазовом переходе в си­
стеме. Предложен простой подход к поиску стационарных состояний. На Рис. 5
представлена временная эволюция систем от разных начальных условий и при
разных параметрах термостатирования. На Рис. 6 представлена диссипатив­
ная фазовая диаграмма такой системы. В заключении раздела обсуждается,
каким образом полученные результаты объясняют ряд особенностей, наблюда­
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Рис. 5. Бинарная система с радиально-зависимой невзаимностью. а) Временная
эволюция средней кинетической энергии 𝐾(𝑡) при различных временах
затухания 𝜏 и начальных состояниях. Пунктирные линии относятся к
петле гистерезиса, показанной на панели b). b) Асимптотическая кине­
тическая энергия 𝐾∞ в зависимости от времен затухания 𝜏 . c) Зависи­
мости мощность энерговыделения, обусловленного невзаимностью, 𝑃NR

(оранжевая линия) и энергообмена с термостатом 𝑃damp (светло-голу­
бые линии). Результаты показаны при 𝑇th = 10−2, время затухания 𝜏
указано на панели b) и обозначено буквами A-H [2]
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Рис. 6. Диссипативный спинодальный распад в системе с невзаимным эффек­
тивным взаимодействием. Асимптотическая энергия 𝐾∞ в зависимости
от времени затухания 𝜏 при различных температурах термостата 𝑇th [2]

емых в экспериментах с комплексной (пылевой) плазмой в земных условиях.
В разделе 4.2 предлагается простая модель взаимодействий пылевых частиц в
комплексной пылевой плазме, учитывающая плазменные следы и позволяющая
выполнять моделирование жидких состояний методами МД. Согласно предло­
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Рис. 7. Термоакустическая неустойчивость: Левая часть – данные эксперимен­
та, правая часть – данные МД, описания совпадают. Спектры элементар­
ных возбуждений в кристалле а) до начала генерации акустических волн
b) после начала генерации. с) Интегральные интенсивности спектров
флуктуаций 𝐼(𝑘). d) Спектр генерируемых акустических волн: символы
данные эксперимента/МД, сплошная линия – теоретический фит [1]

женной модели, взаимодействия частицы 1, находящейся в точке r1 и частицы
2 находящейся в точке r2 описываются:

𝜙(r) = 𝜖

[︃
𝑒−𝑟/𝜆𝐷

𝑟/𝜆𝐷
− 𝑞

𝑒−𝑟𝑤/𝜆𝐷

𝑟𝑤/𝜆𝐷

(︂
1 + 𝑏

𝑒−𝑟𝑤/𝜆𝐷

𝑟𝑤/𝜆𝐷

)︂−1
]︃
, (1)

где 𝜙(r) – потенциал частицы 1, в поле частицы 2 и ее плазменного следа,
r = r1 − r2 – радиус вектор от частицы 2 к частице 1, 𝑟 = |r| -ё расстояние
между частицами, 𝜆𝐷 – длина экранирования Дебая, 𝜖 = 𝑄2/4𝜋𝜀0𝜆𝐷 – энерге­
тический масштаб взаимодействия 𝜀0 – электрическая постоянная, 𝑄 – заряд
частиц (как правило полагается, что заряды частиц совпадают), 𝑞 – относитель­
ный заряд плазменного следа (по отношению к 𝑄), 𝑟𝑤 = |r − ℎe𝑧| расстояние
от плазменного следа частицы 2 до частицы 1, e𝑧 – единичный вектор, направ­
ленный в сторону потока плазмы, ℎ – эффективная длинна плазменного следа,
𝑏 – свободный параметр модели. Как правило, параметры плазменных следов
имеют следующие значения: ℎ ∼ 0.3∆, где ∆ – среднее расстояние между части­
цами, 𝑞 = 0.3, 𝑏 = 0.05...0.1. Предложенная модель позволяет воспроизводить
основные явления, наблюдаемые в экспериментах, в частности термоакустиче­
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скую неустойчивость на основе МД моделирования, что показано на Рис. 7. В
разделе 4.3 обобщаются основные результаты главы.

В ЗАКЛЮЧЕНИИ обобщаются основные результаты диссертации.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Систематически изучены спектры элементарных возбуждений в различ­
ных двумерных и трехмерных жидкостях в широком температурном диа­
пазоне на основе компьютерного моделирования методом МД. Установ­
лено, что метод, основанный на модели двух осцилляторов, позволяет
получить наиболее точные и полные результаты для частот и коэффи­
циентов затухания как высокочастотных, так и низкочастотных ветвей
спектров возбуждения жидкостей в широком диапазоне термодинамиче­
ских параметров. Показано, что дисперсионные зависимости, полученные
при помощи модели двух осцилляторов, позволяют аналитически восста­
новить положения максимумов поперечной компоненты данной модели.
Установлено, что в коротковолновом пределе наблюдается возврат к ре­
жиму индивидуальной динамики отдельных частиц, при котором интен­
сивности продольных и поперечных мод определяются максвелловскими
распределениями скоростей частиц.

2. Разработана теоретическая модель, описывающая явление антикроссинга
в жидкостях. Показано, что антикроссинг мод приводит к перераспреде­
лению спектров коллективных возбуждений, которое сопровождается об­
разованием гибридных высокочастотных и низкочастотных мод (вместо
продольных и поперечных), что должно учитываться при анализе МД и
экспериментальных данных.

3. Показано, что совместный анализ мод, или анализ мод с учетом явления
антикроссинга, позволяет оценить положение границы 𝑞-gap в широком
диапазоне температур, далеко за пределами применимости метода восста­
новления дисперсионных зависимостей, основанного на анализе положе­
ния максимумов интенсивностей спектров. Измерены зависимости разме­
ров области 𝑞-gap от температуры (параметра неидеальности) в различ­
ных двумерных и трехмерных жидкостях.

4. Установлено, что в трехмерных системах Леннарда-Джонса при при крос­
совере Френкеля, первую псевдозону Бриллюэна покидают не все устойчи­
вые элементарные возмущения, а только непередемпфированные. Динами­
ческие и термодинамические критерии линии Френкеля согласуются друг
с другом, если их формулировать только для непередемпфированных эле­
ментарных возбуждений. Показано, что такое согласие может существен­
ным образом нарушаться в системах с более мягкими взаимодействиями.
Более того, динамические и термодинамические критерии принципиально
не согласуются друг с другом в случае двумерных жидкостей, что обуслов­
лено более выраженными эффектами ангармонизма.
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5. Систематически рассчитаны термодинамические свойства двумерных си­
стем Юкавы. Рассчитаны фазовые диаграммы двумерных систем Юкавы
с дополнительным индуцированным изотропным дипольным притяжени­
ем. Было установлено, что мягкость отталкивания Юкавы значительно
влияет на положение критических и тройных точек, а также на поведе­
ние кристаллических ветвей бинодалей. В то же время, бинодали и спи­
нодали в области жидкость-газ могут быть сопоставлены с таковыми для
системы жестких дисков с дипольным притяжением, демонстрируя уни­
версальность при различной мягкости отталкивания Юкавы.

6. Изучена динамика систем с невзаимными эффективными взаимодействи­
ями между частицами. Получены условия, при выполнении которых си­
стема демонстрирует детальное динамическое равновесие, и можно вве­
сти интеграл движения с размерностью энергии (псевдогамильтониан),
в противном случае наблюдается нагрев системы. Показано, что в слу­
чае радиально-зависимой невзаимности из-за сложного вида зависимости
мощностей от средней энергии система может наблюдаться биффуркация
стационарных состояний, и диссипативный фазовый переход. Предложен
и реализован программно простой балансовый подход, который позволяет
рассчитать петли гистерезиса и диссипативную фазовую диаграмму с су­
щественно более низкими вычислительными затратами чем при прямом
МД моделировании.

7. Предложена простая модель взаимодействий пылевых частиц в комплекс­
ной (пылевой) плазме с учетом плазменных следов, позволяющая вы­
полнять моделирование жидкого состояния методами МД. Показано, что
предложенная модель позволяет воспроизводить в МД моделировании ши­
рокий круг явлений, наблюдаемых в экспериментах: активационное и ги­
стерезисное поведение, распространение фронтов неравновесного плавле­
ния, термоакустическую неустойчивость.

8. Проанализированы эксперименты с жидкой комплексной (пылевой) плаз­
мой. На основе анализа распределений по скоростям и обратным локаль­
ным плотностям показано, что систему с высокой точностью можно рас­
сматривать как термализованную 2D жидкость. На основе анализа спек­
тров элементарных возбуждений установлено, что в экспериментах плаз­
менной жидкостью наблюдается антикроссинг мод. Путем сопоставления
результатов с МД моделированием, не учитывающим наличие плазмен­
ных следов, показано, что последние важны для термализации системы,
но не оказывают существенного влияния на спектры элементарных воз­
буждений в рассмотренных экспериментальных режимах.
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