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Общая характеристика работы 

Актуальность темы. Винтовые цилиндрические пружины могут 

использоваться не только как упругие элементы, но также как инструменты 

пружинных мельниц, вибропросеивателей, гибких шнеков и других пружинных 

механизмов (ПМ), предназначенных для обработки или перемещения материала. 

Механические явления, вызываемые вращением изогнутой пружины, должны 

быть правильно предсказаны расчетом. Это необходимо и при конструировании, и 

при выборе режимов работы указанных устройств. Например, знание 

конфигурации изогнутой пружины необходимо при конструировании кожуха, 

выбора величины зазоров между кожухом и пружиной и т.п. Информация о 

резонансных режимах вращения изогнутой пружины позволяет отстроиться от 

интенсивных вибраций, либо настроиться на них в зависимости от 

технологических соображений (интенсивные вибрации существенно ускоряют 

процесс измельчения и перемешивания сыпучего материала). Данное 

исследование является продолжением диссертационных работ, выполненных в 

МГТУ им. Н.Э. Баумана Г. Данаа и Р.Н. Бадиковым, но в гораздо более общей 

постановке, чем у предшественников. Общность постановки заключается в том, 

что здесь интегрируются по времени полные нелинейные уравнения движения 

модели вращающейся изогнутой пружины. 

Разработанная в диссертации методика расчета вращающихся 

деформированных пружин, основанная на использовании специального конечного 

элемента в форме одного витка (КЭВ), имеет существенные преимущества в 

сравнении с альтернативными подходами. КЭВ позволяет рассматривать 

практически все механические явления в пружинных механизмах, при этом он 

экономичнее традиционного стержневого элемента с прямой осью и приводит к 

хорошо обусловленным системам уравнений. Кроме того, математические и 

алгоритмические приемы, которые были апробированы при разработке КЭВ, 

могут быть в неизменном виде перенесены и на другие задачи, в которых 

деформируемые системы совершают большие повороты. В частности, прием 

раздельного хранения большой части поворота в виде матрицы и малой части 

поворота в виде вектора может быть полезен и в других задачах, так как 

полностью снимает проблему «особых точек», известную в теории больших 

поворотов. 

Целью работы является существенное снижение трудоёмкости и повышение 

точности расчета пружинных механизмов с помощью авторского КЭВ, а также 

тестирование и экспериментальная верификация разработанной методики. 

Для достижения поставленной цели были решены следующие основные 

задачи: 

1. С помощью численного решения ряда краевых задач для системы 

дифференциальных уравнений Кирхгофа-Клебша построена матрица 

жесткости КЭВ (малые перемещения) и найдены соответствующие функции 

формы. 

2. По найденным функциям формы рассчитана согласованная матрица масс КЭВ 

(малые перемещения). 
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3. С помощью методики «теневого элемента» произведен переход от случая 

малых перемещений к геометрически нелинейному варианту КЭВ, 

учитывающему большие перемещений и повороты узлов. 

4. Разработан алгоритм численного решения нелинейных задач динамики 

цилиндрических пружин, на основе моделей, построенных из КЭВ. 

5. Выполнены численные расчеты для различных вариантов закрепления и 

нагружения пружины, как в статике, так и в динамике. 

6. Результаты численных расчетов верифицированы натурными экспериментами. 

Методы исследования основаны на фундаментальных положениях 

классической механики, механики деформируемого твёрдого тела и 

вычислительной механики. В работе использован аппарат нелинейной механики, 

методы прямого тензорного исчисления (тензорный вариант механики стержней, 

векторно-тензорная теория больших поворотов) и компьютерной алгебры. 

Научная новизна работы состоит в том, что в ней получены новые научные 

результаты: 

– создана рациональная методика численного расчёта движения пружин, 

позволяющая эффективно учитывать различные конструктивные особенности ПМ 

(начальную кривизну, различные режимы вращения, различные варианты 

закреплений, взаимодействие с внешней средой); 

– получены зависимости резонансных частот и форм колебаний 

вращающихся изогнутых пружин от конструктивных параметров ПМ различных 

типов; 

– выявлены закономерности и степень влияния различных конструктивных 

параметров ПМ на режимы движения пружин. 

Достоверность результатов, полученных с использованием разработанных 

методик, подтверждена их хорошим совпадением с данными проведённых 

экспериментов, с результатами других исследователей и проверкой на модельных 

и тестовых задачах. 

Практическая значимость работы. Разработанное программно- 

алгоритмическое обеспечение доведено до уровня, позволяющего применять его в 

расчётно-проектировочной практике и использовать при проектировании 

перспективных ПМ и других машин с гибкими вращающимися элементами, что 

подтверждается актом о внедрении. Его применение значительно сокращает 

объем экспериментальных исследований и ускоряет сроки разработки новых 

конструкций ПМ 

Изложенные в диссертации методы, алгоритмы и программное обеспечение 

могут быть использованы для расчёта и проектирования широкого класса ПМ с 

вибрирующими и вращающимися пружинами. 

На защиту выносятся следующие основные положения: 

– методика численного расчёта движения вращающихся деформированных 

(изогнутых, растянутых и т.п.) пружин в ПМ различных конструкций; 

– анализ результатов численных расчетов и экспериментальных 

исследований различных режимов движения вращающихся деформированных 

пружин. 
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Апробация работы. Основные положения и результаты работы 

докладывались и обсуждались на следующих конференциях и семинарах: 

– на III международной школе-конференции молодых учёных «Нелинейная 

динамика машин School-NDM» (г. Москва, 2016 г.); 

– на I Всероссийской научно-технической конференции «Механика и 

математическое моделирование в технике» (г. Москва, 2016 г.); 

– на международной конференции «Vibroengineering-2016 / Special Topic: 

Dynamics of Strong Nonlinear Systems» (г. Москва, 2016 г.); 

– на IV международной школе-конференции молодых учёных «Нелинейная 

динамика машин» School-NDM» (г. Москва, 2017 г.); 

– на II Всероссийской научно-технической конференции «Механика и 

математическое моделирование в технике» (г. Москва, 2017 г.). 

Публикации. По результатам диссертации опубликовано 8 работ, включая 3 

статьи в журналах, принадлежащих перечню ВАК РФ, и 1 статья в журнале, 

индексируемом в международной базе данных SCOPUS. 

Структура и объем диссертационной работы. Диссертация состоит из 

введения, пяти глав и четырех приложений. Общий объем составляет 154 

страницы, 69 рисунков и 9 таблиц. Список используемой литературы содержит 

144 наименования. 

Содержание работы 

Во введении обоснована актуальность диссертационной работы, проведена 

постановка задач и краткая аннотация содержания работы по разделам, дана оценка 

научной новизны и практической значимости полученных результатов и 

сформулированы защищаемые положения. 

В первой главе проведен обзор работ по теме диссертации, в частности А. 

Клебша, Г. Кирхгофа, С.Д. Пономарева, Е.П. Попова, Н.Н. Малинина, В.Л. 

Бидермана, В.А. Светлицкого, О.С. Нарайкина, П.А. Жилина, В.В. Елисеева, С.С. 

Гаврюшина, Г. Данаа, Р.Н. Бадикова, C.A. Felippa, B. Haugen, J. Argiris, S. Antman и 

др. Приведены примеры конструкций ПМ. Представлены различные варианты 

систем дифференциальных уравнений, предназначенных для расчета гибких 

стержней. Показаны преимущества и недостатки существующих вариантов МКЭ 

в применении к расчету пружин. Выполнен анализ различных методов численного 

интегрирования дифференциальных уравнений динамики упругих систем. 

Произведено сопоставление различных способов описания больших поворотов. 

Рассмотрены экспериментальные исследования других авторов.  

Во второй главе разработан вариант КЭВ, предназначенный для решения 

задач статики и динамики винтовых цилиндрических пружин при малых 

перемещениях, то есть для решения геометрически линейных задач (ЛКЭВ).  

ЛКЭВ представляет собой один виток цилиндрической пружины с узлами, 

расположенными на ее оси – в точках A и B (Рис. 1) Так как каждый узел имеет 

шесть степеней свободы, то ЛКЭВ имеет двенадцать степеней свободы, 

аналогично обычному балочному элементу. 
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По сравнению с обычным 

балочным элементом ЛКЭВ 

имеет два преимущества. 

Во-первых, в ЛКЭВ нет различия 

жесткостей на растяжение и 

изгиб, которое для балочного 

элемента может достигать 100 и 

более раз. Во-вторых, ЛКЭВ 

заменяет примерно 20 балочных 

элементов, так как при 

аппроксимации витка прямыми 

балками их нужно не менее 20. 

То есть, использование 

ЛКЭВ позволяет радикально (в десятки раз) снизить размерность системы 

алгебраических уравнений МКЭ для пружины и не менее радикально повысить ее 

обусловленность. 

Для численного расчета матрицы жёсткости [K0] ЛКЭВ применялась система 

линейных дифференциальных уравнений малых перемещений пространственных 

стержней, которая является аналогом известных уравнений Кирхгофа–Клебша 

(поперечные сдвиги и деформация оси учтены):  

  ,  ,  ,  ,
d d d d

ds ds ds ds
         

P M u
0 t P 0 t D P A M


               (1) 

где s – дуговая координата; P , M  – векторы внутренних сил и моментов в 

сечении; u ,   – векторы перемещений и поворотов сечения стержня; A –тензор 

податливости сечения от изгиба и кручения; D – тензор податливости сечения от 

растяжения и сдвига; t – орт касательной к оси стержня. 

Два первых уравнения (1) представляют собой уравнения равновесия, третье и 

четвертое – соотношения упругости. 

Винтовая линия (ось пружины) задавалась в обычном параметрическом виде: 
T

cos cos
( ) sin , sin , cos ,

s s
s s R R

R R

 


      
        

    
r                  (2) 

где  – угол подъема винтовой линии; R – радиус пружины (Рис. 1). 

Орт касательной определялся как производная от радиуса-вектора оси: 

                  .
d

ds


r
t                                     (3) 

С учетом того, что поперечное сечение витка круглое и все его оси являются 

главными, тензоры податливости сечения удалось представить в сокращенном 

виде: 

1 1 1
( ), ( ),

p x

k

GJ EJ EA GA
         A t t E t t D t t E t t                 (4) 

где ,  x pJ J – осевой и полярный моменты инерции сечения; A – площадь сечения; E 

– единичный тензор; ,E G – модули упругости первого и второго рода; t t – 

 
Рис. 1. Конечный элемент в виде витка 

цилиндрической пружины 
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диадное произведение касательного орта на себя; k – коэффициент учёта 

неравномерности распределения касательных напряжений по сечению. 

Площадь и моменты инерции круглого сечения определялись по обычным 

формулам: 
2 4 4

,    , ,
4 64 32

x y p

d d d
A J J J

  
     

где d – диаметр витка (Рис. 1). 

Элементы матрицы жёсткости [K0] ЛКЭВ размерности 1212 находились 

последовательным решением 12-ти линейных краевых задач для системы 

дифференциальных уравнений (1). Численное решение каждой краевой задачи 

осуществлялось в пакете Wolfram Mathematica. При этом предварительно 

выполнялось преобразование векторных уравнений (1) к 12-ти уравнениям в 

проекциях на неподвижные декартовы оси x1, x2, x3 процедурами того же пакета. 

Вектор перемещений ЛКЭВ размерности 121 представляет собой 

объединение проекций узловых перемещений и поворотов на координатные оси: 

 
T

T T T T, , , ,A A B BY u u                           (5) 

где индексы A, B помечают узлы (Рис. 1), а направленные отрезки рассматриваются 

как матрицы – столбцы 31.  

Для построения одного из столбцов матрицы жесткости в каждой из краевых 

задач 11-ть узловых перемещений в (5) задавались равными нулю, а узловое 

перемещение с номером i (i = 1…12) задавалось равным единице. 

С помощью уравнений кинематики перемещения и повороты из узлов A и B 

переносились на края винтовой линии A0, B0, что позволило записать граничные 

условия для системы (1): 

        0 ,  0 ,   ,  ,A A A s B B s BR l R l       u u e u u e             (6) 

где e – орт оси x3; ls =2R/cos – полная длина винтовой линии (оси) КЭВ. 

Решение линейной краевой задачи для системы (1) с граничными условиями 

(6) позволило найти все компоненты напряженно деформированного состояния 

винтового стержня, в том числе и силы, действующие на краях витка. Перенос этих 

сил в узлы A и В выполнялся аналогично (6): 

           0 ,  0 0 ,  ,  .A A B s B s sR l l R l         P P M M e P P P M M e P    (7) 

Вектор обобщенных узловых сил ЛКЭВ формировался из проекций векторов 

сил и моментов, найденных из (7):  

                   
T

T T T T, , , .A A B BN P M P M                         (8) 

Для случая единичного обобщенного узлового перемещения с номером i 

вектор N представляет собой набор реакций ЛКЭВ на заданное единичное 

перемещение, то есть столбец матрицы жесткости. Решение каждой линейной 

краевой задачи позволяет заполнить один столбец матрицы жесткости. Решение 

12-ти таких краевых задач позволило найти все 144 элемента матрицы жёсткости 

[K0]. При этом контроль осуществлялся по выполнению свойства симметрии 

матрицы жесткости K0ij = K0ji.  



6 

Элементы матрицы масс 0ijM  определялись как взвешенные скалярные 

произведения найденных выше функций формы: 

0

0 0

  ,

l l

ij i j i jM А ds ds     u u J                       (9) 

где i, j – номера функций формы (i=1…12, j=1…12); ,  }{ iiu   – вектор-функция 

формы с номером i;  – плотность; J – тензор геометрических моментов инерции 

сечения c размерностью м4: 

    .p xJ J    J t t E t t                               (10) 

По найденным матрицам [K0] и [M0] ЛКЭВ стандартными приемами МКЭ 

были построены результирующие матрицы жёсткости [K] и масс [M] полной 

модели цилиндрической пружины, которая содержала 38 витков и 234 степени 

свободы (по 6 степеней свободы в каждом из 39 узлов). 

Граничные условия учитывались обычным для МКЭ приемом, то есть 

исключением фиксированных степеней свободы.  

В качестве примера рассматривалась пружина экспериментального стенда со 

следующими исходными данными: модуль упругости 112 10E   Па; коэффициент 

Пуассона 0,3  ; плотность 8000  кг/м3; радиус цилиндра, описывающего 

пружину 
313,25 10R   м; диаметр проволоки

32,6 10d   м; угол подъёма 

винтовой линии 3,5   ; количество витков 38N  . 

Частоты и формы собственных колебаний пружины находились 

традиционным для МКЭ способом из однородной системы уравнений: 

    2 ,p    M K Y 0                            (11)  

где p – искомая круговая частота собственных колебаний; Y – искомый вектор 

перемещений (форма колебаний);  –  индекс, помечающий матрицы и векторы  

всего ансамбля КЭВ. 

Контроль расчета частот и форм собственных колебаний пружины 

выполнялся сравнением с экспериментами. Расчет выполнялся как с учетом 

инерции вращения, осевых деформаций и сдвигов (расчет №1) так и без такого 

учета (расчет №2), при этом для младших частот различия не наблюдалось. 

Сопоставление результатов расчёта и эксперимента для первых четырёх 

собственных частот прямой пружины, заделанной по краям, представлено в 

Таблице 1. Для измерения 1-й собственной частоты использовался лазерный 

цифровой виброметр, а для 2-й, 3-й и 4-й использовался строботахометр. 

Таблица 1. 
Порядок 

частоты 

Эксперимент, 

 Гц 

Расчёт №1, 

 Гц 

Расчёт №2,  

Гц 

Отличие, % 

№1 №2 

1-я  17,2 16,57 16,56 3,7 3,7 

2-я 34,0 ± 0,1 35,73 35,82 5,1 5,4 

3-я 39,5 ± 0,1 40,71 40,82 3,1 3,3 

4-я 46,6 ± 0,2 46,42 46,47 0,4 0,3 



7 

Сопоставление с экспериментом показало хорошую точность предложенного 

ЛКЭВ в задачах модального анализа.  

В третьей главе ЛКЭВ преобразован в геометрически нелинейный конечный 

элемент в форме витка (НКЭВ), учитывающий большие перемещения и повороты, 

предназначенный для решения задач статики. При построении НКЭВ малые 

относительные перемещения отсчитывались от промежуточного условного 

«теневого» положения, в котором элемент не деформирован. Матрица касательных 

жесткостей и вектор упругих сил НКЭВ находились дифференцированием упругой 

энергии витка, выраженной через относительные перемещения. Разработанные 

алгоритмы вычисления матрицы касательных жесткостей и вектора упругих сил 

контролировались сопоставлением с решениями нелинейных дифференциальных 

уравнений из книг В.А. Светлицкого. 

В работе апробирован редко используемый способ хранения конечного 

поворота в виде двух частей – большой и малой (инкрементный способ). Большая 

часть сохранялась в виде тензора (или матрицы) и оставалась неизменной на шаге 

интегрирования, а малая часть была представлена вектором Эйлера (вектор 

ориентации). Так как длина вектора Эйлера, имеющая смысл угла поворота, всегда 

мала, то особая точка 2, характерная для вектора Эйлера, никогда не достигалась. 

Тензор поворота связан с вектором Эйлера следующим соотношением, 

которое можно рассматривать как тензорную функцию векторного аргумента: 

2

1 cos sin
( ) cos ,

 


 


    L E E                        (12) 

где θ=   – модуль вектора Эйлера  ; ( )L   – функция, вычисляющая тензор 

поворота по заданному вектору Эйлера; E – единичный тензор;    – диадное 

произведение векторов; E  – кососимметричный тензор с сопутствующим 

вектором  . 

В начале шага итерационного процесса или шага интегрирования по времени 

положение и повороты всех узлов конструкции заданы, поэтому тензоры поворотов 

всех узлов известны. В процессе шага численного интегрирования накопленная 

часть поворота произвольного узла (в виде тензора R0) остаётся неизменной, а 

изменяется только дополнительную часть (в виде вектора Эйлера  ). Вектор 

Эйлера каждый раз начинает отсчитываться от текущего положения узла - это 

равносильно повороту системы координат. Поэтому в начале шага интегрирования 

вектор Эйлера всегда равен нулю, а так как шаг интегрирования по времени мал, то 

величина вектора Эйлера никогда не достигает критического значения 2.  

Таблица 2. 

Алгоритм припасовывания малого поворота к большому 
 Накопленный 

поворот 

 

Вектор Эйлера 

Начало шага интегрирования R0 0 

Конец шага интегрирования R0   

Припасовывание малого поворота к большому 

и сброс малого поворота 
0 0( ) R L R     
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После выполнения шага интегрирования вектор Эйлера с помощью функции (12) 

превращается в тензор дополнительного поворота и перемножается с тензором 

накопленного поворота R0, т.е. припасовывается к большому повороту и 

становится его частью. Следующий шаг интегрирования опять начинается с 

нулевого вектора Эйлера. Фактически вектор Эйлера живет только на шаге 

интегрирования. В Таблице 2 представлены этапы этого алгоритма. 

С целью перехода от малых перемещений и поворотов к большим в данной 

работе был использован «метод теневого элемента» (corotational finite element), 

основанный на том, что деформации в материале пружины являются малыми и 

изменение размеров элемента также мало. Для выделения малых перемещений и 

поворотов, вызванных малыми деформациями, полное (большое) перемещение 

КЭВ рассматривалось, как состоящее из нескольких этапов (Рис. 2).  

В исходном состоянии (I) пружина 

не деформирована, виток также не 

деформирован. В актуальном 

состоянии (III), которого достигает 

виток в процессе движения он 

деформирован, но так как 

деформации в материале проволоки 

малы, то искажение конфигурации 

витка не велико. В связи с этим 

можно рассматривать переход из 

исходного состояния в актуальное, 

как комбинацию жесткого 

перемещения из положения (I) в 

промежуточное теневое положение 

(II) с последующим наложением 

малых перемещений, 

обусловленных малыми 

деформациями в материале 

(переход из (II) в (III)). Термин 

«теневое» объясняется тем, что 

состояние (II) реально не 

существует, оно конструируется 

искусственно. 

Очевидно, что выбор теневого положения не однозначен, но состояния (II) и 

(III) должны быть максимально близкими. При нахождении положения (II) в 

данной работе используется следующий подход: из тензоров фиксированных 

поворотов узлов R0a и R0b с помощью специального алгоритма формируется тензор 

среднего поворота Rm, из векторов линейных перемещений узлов ua и ub 

формируется вектор среднего перемещения um=(ua + ub)/2. Тогда переход из (I) в (II) 

можно рассматривать как параллельный перенос КЭВ на вектор um с последующим 

поворотом вокруг центра (средняя точка между узлами КЭВ) на тензор Rm. 

Сопоставление радиусов-векторов и поворотов узлов КЭВ в состояниях (II) и (III) 

 
Рис. 2. Участок гибкого стержня в базовом 

(0), исходном (I), теневом (II) и актуальном 

(деформированном) (III) состояниях, ua, ub 

– векторы линейных узловых 

перемещений, R0a, R0b – тензоры больших 

узловых поворотов, a , b  – векторы 

малых дополнительных узловых 

поворотов, Rm – тензор среднего поворота; 

um – вектор среднего перемещения 
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позволяет найти малые перемещения и повороты, вызванные деформациями 

проволоки 

 

 

1

1

;  ;
2 2

;  ,
2 2

a b
a m zI a a

b a
b m zI b b

l

l

 

 


     


    

u u
u R E e

u u
u R E e

  

   

                (13) 

где 1 – вектор малого относительного поворота узлов (R0a=L(1)
T·Rm, 

R0b=L(1)·Rm); ezI – орт оси КЭВ в состоянии (I) (Рис. 2); l – расстояние между 

узлами КЭВ в исходном состоянии; звездочка помечает малые перемещения и 

повороты (Рис. 2), вызванные упругими деформациями.  

По найденным малым упругим перемещениям строилась потенциальная 

энергия деформации НКЭВ 

   

     

T

T

0

1
;   ;

2

;   ,

a a II

a a II
II all

IIb b

II
b b

II all all II m I

U

 

 

 

 

   
    
 

   
     
 

   
 

     
   

  

u u R

R
K R

Ru u

R

K R K R R R R

 

 

                (14) 

где RI – тензор поворота из положения (0) в положение (I); RII – тензор поворота из 

положения (I) в положение (II); [Rall] – полная матрица поворота из положения (I) в 

положение (II) размером 1212; [K0] – полученная во 2-й главе локальная матрица 

жесткости ЛКЭВ размером 1212, которая соответствует базовому положению (0) 

на Рис. 2; [KII] – та же матрица после поворота КЭВ в положение (II). 

Здесь и далее квадратными скобками обозначены матрицы 1212 (либо 

матрицы большей размерности), при этом тензорам (без квадратных скобок) 

соответствуют матрицы 33. 

Согласно общим положениям механики первые производные потенциальной 

энергии деформации по обобщенным узловым перемещениям являются 

неуравновешенными узловыми силами, взятыми с обратным знаком, а вторые 

производные – касательными жесткостями. То есть, вектор неуравновешенных 

упругих сил P и матрицу касательных жесткостей [Ktang] можно представить в 

следующем виде: 

2

tang 2
; [ ] ;   ,

a

a

b

b

U U

 
 

      
  
 
 

u

P K y
uy y





                         (15) 

где y – полный вектор узловых перемещений (тензоры поворота R0a и R0b 

фиксированы на шаге интегрирования, поэтому в y не входят). 

Описанный алгоритм получения P и [Ktang] практически полностью идентичен 

алгоритму из работы Попова В.В, Сорокина Ф.Д. и Иванникова В.В., где метод 
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теневого элемента применялся для прямолинейного стержня, поэтому 

результирующие формулы получаются такими же, как в указанной работе: 

           

 

 

 

T T

tang

1

1

;   ;

2

21
;    .

2

22

II II

m zI

m zI

l

l

     

 
    
  

   
  
    
  
  

P H K y H y K H K H

R E e
E 0 E 0

0 E 0 0
H y

E 0 E 0
R E e

0 0 0 E

0

0





               (16) 

Для верификации НКЭВ выполнялось сопоставление расчетов изогнутой 

пружины с использованием НКЭВ и дифференциальных уравнений (ДУ). 

Рассматривалась прямая пружина, которая после приложения внешнего момента 

изгибалась в дугу (Рис. 3). После этого один из крайних узлов пружины был 

заделан, а второй был закреплен в цилиндрическом шарнире, допускающем 

смещение вдоль горизонтальной оси x3. Рассчитывались различные конфигурации, 

которые принимает пружина при нагружении подвижного шарнира 

горизонтальной силой F (такие конфигурации характерны для некоторых ПМ). 

Сопоставление показало, что при нагрузке F=20 Н перемещения правого 

торца пружины (Рис. 4), найденные с помощью НКЭВ и из решения нелинейной 

краевой задачи для системы ДУ, отличаются всего на 2,4%. Таким образом НКЭВ 

был успешно верифицирован для нелинейных задач статики пружин. 

В четвертой главе НКЭВ распространен на задачи динамики пружин. 

Матрица обобщенных сил, гироскопическая матрица и вектор инерционных 

нагрузок НКЭВ были найдены преобразованиями его кинетической энергии, 

выраженной через точные линейные и угловые скорости узлов. Смысл 

преобразований состоит в построении и линеаризации той части уравнения 

Лагранжа 2-го рода, которая связана с кинетической энергией. Полученные в этой и 

предыдущей главе матрицы и векторы использованы для построения полной 

линеаризованной системы дифференциальных уравнений движения модели 

пружины, представляющей собой цепочку из НКЭВ. Уравнения движения 

проинтегрированы численно методом Ньюмарка для реальной пружины, 

использованной в экспериментальных исследованиях. Все компоненты вектора 

состояния полностью определялись численным расчетом, что позволило 

  

Рис. 3. К расчёту конфигурации 

пружины в ПМ 

Рис. 4. Сопоставление конфигураций 

изогнутой пружины, рассчитанных 

различными методами при F=20Н 
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визуализировать движение пружины в форме анимации и сопоставить ее с 

видеозаписью натурного эксперимента. 

С матрицей масс связана кинетическая энергия: 

 

 

 

 

T

* * T

0

0

0*

0

0

1
[ ][ ][ ] ;

2

, 

a a

a a

all all

b b

b b

a a I

a a I

all

b b I

b b I

T

   
   
   
   
   
   

  
 

        
    

v v

ω ω
R M R

v v

ω ω

L R R

L R R
R

L R R

L R R









  (17) 

где [M0] – полученная во 2-й главе локальная матрица масс ЛКЭВ, которая 

соответствует базовому положению (0) на Рис. 2; *[ ]allR  – матрица поворота, 

учитывающая малые повороты (в отличие от [Rall]); av , bv  – линейные скорости 

узлов; aω , bω  – угловые скорости сечений. 

Линейные скорости av , bv  равны производным линейных перемещений, а 

угловые скорости aω , bω  выражаются через производные векторов Эйлера с 

помощью тензора П.А. Жилина: 

 

 

  3 2

[ ] ;   [ ] ;

sin sin 1 cos
,

a

аa

all all

b

bb

d

dt

   

  

  
  
    
  
  

   

 
    

Ev

Bω y
B B

Ev

Bω

B E E





   

              (18) 

где ( )B   – функция, вычисляющая тензор П.А. Жилина по заданному вектору 

Эйлера. 

Подстановка (18) в (17) позволяет представить кинетическую энергию через 

обобщенные скорости 

T T * * T

0

1
[ ] ;  [ ] [ ] [ ][ ][ ] [ ],

2
all all all allT  y M y M B R M R B                   (19) 

где [M] – матрица обобщенных масс НКЭВ. 

Дальнейший вывод выражений для гироскопической матрицы и вектора 

инерционных нагрузок целесообразно проводить в индексной форме. В индексной 

форме выражение для кинетическая энергия имеет вид 

1
,

2
i ij jT y M y                                 (20) 

где Mij – элементы матрицы [M]; индексы i и j пробегают значения от 1 до 12 

(суммирование по повторяющимся индексам). 

Уравнения Лагранжа 2-го рода имеют вид 
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          ,i i

i i i

d T T
Q P

dt y y y

   
    

   
                             (21) 

где Qi – элементы вектора внешних нагрузок; Pi – элементы вектора внутренних 

упругих сил (вектор P из соотношения (16)); 
1

2
i ij jy C y 

 
– диссипативная 

функция Релея; Cij – обобщенные вязкости. 

Для применения метода Ньюмарка уравнения (21) были линеаризованы с 

помощью компьютерной аналитики. При линеаризации левой части уравнений (21) 

были получены гироскопическая матрица [G], а также вектор инерционных 

нагрузок F отдельного НКЭВ.   

  С целью составления полной модели пружины найденные выше матрицы 

[Ktang], [M], [G], а также векторы P и F отдельных НКЭВ были объединены в 

ансамбль конечных элементов с помощью стандартной методики МКЭ, при 

которой матрицы накладывались уголком друг на друга. В результате были 

получены линеаризованные уравнения движения 

             ,                     M Y C G Y K Y P F M Y C Y     (22) 

где Y – полный вектор узловых перемещений пружины; Y – приращение 

вектора Y; [С] – матрица демпфирования. 

Вектор внешних нагрузок Q не присутствует в (22), так как движение 

пружины задается кинематическим способом (Рис. 5), но при необходимости он 

может быть учтен. 

Размерности всех матриц и векторов в (22) соответствуют набору из 38 КЭВ, в 

котором имеется 39 узлов по 6 степеней свободы в каждом. Таким образом, после 

составления ансамбля КЭВ модель имеет 234 степени свободы. 

Учет закреплений и кинематического 

нагружения выполнялся исключением 

фиксированных степеней свободы. В ведущем 

узле, вращение которого определяется 

двигателем (Рис. 5), поворот вокруг оси 

шарнира задавался как функция от времени, а 

для остальных 5 обобщенных перемещений 

были приняты нулевые значения. В 

свободном узле для аналогичных 5 

обобщенных перемещений были приняты 

нулевые значения, а поворот вокруг оси 

шарнира остался обычной степенью свободы. Таким образом после учета 

закреплений и кинематического возбуждения общее количество степеней свободы 

в модели пружины уменьшилось на 11 и стало равным 223.  

Численное интегрирование системы дифференциальных уравнений движения 

(22) выполнялось неявным методом Ньюмарка, при реализации которого на 

каждом шаге интегрирования выполнялся итерационный процесс для системы 

линеаризованных дифференциальных уравнений (22). При этом матрицы и 

векторы, входящие в (22), пересчитывались после каждой итерации метода. 

 
Рис. 5. Расчетная схема, 

соответствующая 

экспериментальной установке  
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Итерации метода Ньюмарка сходятся к решению исходной нелинейной системы 

дифференциальных уравнений:  

    .     M Y C Y P F                   (23) 

Начальные условия для скоростей и ускорений выбирались нулевыми, а 

начальные значения обобщенных перемещений были взяты из решения задачи 

статики для изогнутой в дугу пружины. 

Все компоненты вектора состояния полностью определялись численным 

расчетом, что позволило визуализировать движение пружины в форме анимации 

и сопоставить ее с видеозаписью натурного эксперимента. Наибольший интерес 

представляют резонансные режимы вращения пружины, поэтому ниже 

представлены результаты расчета именно для резонансных режимов вращения 

(Рис. 6).    

 
Рис. 6. Расчетные конфигурации изогнутой пружины при 1-ой резонансной 

частоте вращения ведущего захвата (аналог анимации)  

Для более надежного выделения резонансной частоты выполнялся 

спектральный анализ зависимости перемещения от времени (Рис. 7). 

  
(а)                               (б) 

Рис. 7. Зависимость перемещения u2 (вдоль оси x2) 19-го узла от времени t для 

установившегося режима движения пружины (t=4÷10 c) (а) и его спектр (б)  

При плавном увеличении угловой скорости вращения ведущего захвата в 

области первого резонансного режима начинаются интенсивные вибрации 

пружины с большой амплитудой вдоль оси x2. Рассматривалась зависимость 

перемещения u2 вдоль оси x2 (Рис. 7, а) от времени для 19-го узла. Узел с номером 

19 был выбран для наблюдений в связи с тем, что он расположен наиболее далеко 

от захватов и поэтому имеет наибольшие перемещения (двигатель задает угловую 
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скорость узлу с номером 39). 

Максимум амплитуды 19-го узла (Рис. 7, б) соответствует частоте f1
* = 14,01 

Гц, которая несколько меньше расчетной частоты f1 = 14,2 Гц. Расхождение f1 и f1
* 

можно объяснить нелинейными эффектами и влиянием демпфирования. Однако 

отмеченное расхождение небольшое и ожидаемое, поэтому можно утверждать, что 

спектральный анализ также подтверждает надежность разработанной методики. 

В пятой главе выполнены экспериментальные исследования по определению 

собственных частот и форм колебании, а также резонансных режимов вращения 

изогнутой пружины. Экспериментально находилась зависимость резонансной 

частоты вращения от начального поджатия или начального удлинения прямой 

пружины. Основная часть экспериментов выполнялась с использованием 

строботахометра.  

Для подтверждения экспериментальной методики, основанной на 

использовании строботахометра, низшие частоты определялись также с 

использованием лазерного оборудования (без вращения пружины). Определение 

уточненного экспериментального значения низшей собственной частоты прямой и 

изогнутой пружины выполнялось на портативном цифровом виброметре PDV-100 

и АЦП National Instruments (Рис. 8, а). После подготовительных операций лазер 

направлялся и фокусировался на объекте измерения. Лазерное пятно 

выравнивалось по центру пружины на витке (Рис. 8, б). Далее низшая собственная 

частота пружины находилась с помощью ударного тестирования (удар молотком). 

Анализ результатов наблюдений производился с помощью специального 

программного обеспечения в среде LabView. 

  

 

 

 

 

 

 

 

 

 

 

 

Рис 8. Установка лазерной доплеровской виброметрии и стенд с пружиной (а); 

стенд с прямой пружиной и лазерное пятно (б); спектр колебаний прямой 

пружины (LabView) (в) 

На Рис. 8 (в), где показаны результаты обработки результатов испытаний в 

среде LabView, видно, что 1-я собственная частота получилась равной 17,2 Гц 

(сопоставление с расчетом выполнено в Таблице 1). 

Для верификации методики решения нелинейных уравнений движения 

модели пружины выполнялся эксперимент с видеозаписью процесса 

 
(а) 

 
(б) 

 
(в) 
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динамического поведения пружины, изогнутой в дугу (Рис. 9, а-в). 

   
(а)                      (б)                      (в) 

Рис. 9. Исходное положение изогнутой пружины на стенде (а); наблюдаемые 

конфигурации пружины на 1-м резонансном режиме вращения (б-в) 

Экспериментальный стенд позволяет задавать произвольное положение 

захватов пружины в плоскости основания и создавать весьма разнообразные 

начальные конфигурации пружины. В ходе динамических испытаний пружина, 

установленная на стенде, вращалась с постепенно увеличивающейся угловой 

скоростью до момента наступления резонанса. 

Полное совпадение экспериментальных видеозаписей (Рис. 9, б-в) с 

анимацией расчетов (Рис. 6) говорит об успешной экспериментальной 

верификации разработанной методики, основанной на использовании НКЭВ. 

В конце главы обсуждается возможность учёта контакта витков, влияния 

внешней среды на движение пружины и другие дополнительные аспекты.  

 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ 

1. В диссертации предложен новый перспективный подход к исследованию 

динамики сильно деформированных вращающихся пружин в ПМ, основанный 

на использовании конечного элемента в виде одного витка с узлами, 

расположенными на оси пружины. 

2. Высокую точность предложенной методике обеспечивает использование 

точных функций формы КЭВ, которые находятся как решения 

дифференциальных уравнений механики стержней. При построении матриц 

жесткости и масс элемента производился учёт осевых деформаций, 

поперечных сдвигов и инерция вращения. 

3. Проблему особых точек при описании больших поворотов пружины удалось 

полностью решить приемом раздельного хранения накопленной части 

поворота в виде тензора и дополнительной (малой) части поворота в виде 

вектора Эйлера. 

4. Показано, что использование предложенной методики существенно (в десятки 

раз) уменьшает размерность задачи, столь же существенно сокращает время 

вычислений и улучшает обусловленность разрешающих уравнений. 

5. Переход к случаю больших перемещений и поворотов удалось выполнить 

довольно редко используемым «методом теневого элемента». 

6. Практически полное визуальное совпадение видео эксперимента и анимации 

расчета свидетельствует об отсутствии ошибок в предложенных уравнениях, 

разработанных алгоритмах и кодах программ. Можно уверенно утверждать, 

что разработанная методика исследования динамики сильно 
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деформированных (изогнутых) пружин прошла успешную 

экспериментальную верификацию. 

7. Результаты диссертации внедрены в учебный процесс кафедр прикладной 

механики МГТУ им. Н.Э. Баумана и в расчетную практику 

инженерно-консультационного центра по роторной динамике «Альфа - 

транзит». 
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