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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. Резкое усложнение 

разрабатываемых систем и комплексов привело к расширению круга 

предварительных исследований и увеличению объемов и сроков натурных 

испытаний. 

Отечественный и зарубежный опыт показал, что натурные испытания 

занимают до 50% времени, необходимого для конструирования и изготовления 

опытных образцов, а их стоимость достигает 40% от стоимости разработок. 

Затягивание сроков испытаний приводит к моральному старению 

испытываемой системы к моменту ее создания. 

Решение проблемы сокращения сроков проведения НИОКР и освоения 

разработок представляется возможным при широком внедрении моделирования 

в технологический процесс. Как показывает практика, качество и сроки 

проектирования в значительной степени зависят от полноты функционального 

анализа и правильного выбора аппаратных единиц разрабатываемой системы 

уже на этапе предварительных исследований. На этом этапе весьма желательно 

иметь как можно более полную информацию о динамических характеристиках 

разрабатываемой системы и условиях ее эксплуатации. Однако провести 

аналитические исследования современных информационно-управляющих 

систем практически не удается. Поэтому неотъемлемой частью проектирования 

становится имитационное моделирование, причем оно должно применяться не 

только при подготовке технических предложений и требований к создаваемому 

образцу, но и на этапах эскизного и технического проектирования, при 

отработке образцов в условиях их функционирования, а также на этапе 

испытаний (сопровождающее моделирование). 

Следует отметить, что на этапе отработки образцов особое место 

занимает полунатурное моделирование, с заменой ряда звеньев контура 

управления изготовленными блоками реальной аппаратуры. На стадии 

разработки системы оно дает возможность уточнить основные характеристики 

уже изготовленных элементов, а также выбрать оптимальные характеристики и 

параметры проектируемых элементов. После завершения разработки 

полунатурное моделирование способствует проведению весьма полных 

исследований системы в целом, чтобы сократить круг вопросов, выносимых в 

дальнейшем на испытания. 

Большой вклад в теорию и практику полунатурного моделирования 

внесли К.А. Пупков, Н.В. Барышников, Н.В., А.В. Бабиченко, Н.В. Лукьянова, 

Э.В. Баранов, Хемди А. Таха, У. Дж. Карплюс, П. Дж. Кивиа. 

 При разработке систем управления движущихся объектов используется 

полунатурное моделирование с динамическими стендами. Например, в 

многофункциональном исследовательском тренажере кабины-имитатора 

летательного аппарата (ЛА) инжинирингового научно-образовательного центра 



2 

(ИНОЦ) «Авионика» МГТУ им. Н.Э. Баумана, использована модульная схема 

построения комплекса полунатурного моделирования, которая содержит блоки, 

включающие, в том числе, математические модели исследуемых процессов. 

Используемые в моделирующем комплексе математические модели 

представляют собой априорные модели, полученные на основе физических 

законов, а также модели, полученные в процессе полунатурного и летного 

экспериментов. При формировании и уточнении моделей исследуемых 

процессов используются алгоритмы идентификации и построения моделей, 

которые разрабатывали Ципкин Я.З., Брикман М.С., Ивахненко А.Г., Капалин 

В.И., Кривулин Н.П., Бойков И.В., Винер Н., Эйкхоф П., Гроп Д., Люнг Л., 

Саридис Дж. М., Мармарелис, Дейч А.М., Поулис М.П., Гудсон Р.Е. и др. 

Использованы модели динамики основных процессов и систем, в которых 

не учтены некоторые особенности исследуемых процессов, в частности 

погрешности моделируемых систем. 

Целью работы является разработка алгоритмов идентификации для 

формирования моделей в комплексе полунатурного моделирования кабины-

тренажера ЛА. 

Поставленная цель достигается путем совершенствования 

моделирующего комплекса, в частности кабины-тренажера центра «Авионика», 

использования более подробных моделей в модульной структуре комплекса 

моделирования; разработки методики проведения полунатурных 

экспериментов, разработки алгоритмов идентификации  с целью построения 

высокоточных моделей комплекса. Алгоритмы идентификации применяются 

для уточнения моделей алгоритмического обеспечения кабины-тренажера, а 

также предусмотрено их использование в алгоритмическом обеспечении 

авионики на борту ЛА в процессе полета. В связи с этим алгоритмы 

идентификации должны отвечать следующим требованиям: высокой точности; 

быстродействию (работа в реальном времени); простотой реализации в БЦВМ.  

Для реализации поставленных задач целесообразно: 

– провести системный анализ известных методов идентификации 

моделей исследуемых систем; 

– разработать способ модернизации структуры моделирующего 

комплекса кабины-тренажера ЛА; 

– разработать наиболее эффективную методику проведения 

полунатурного моделирования и оценки результата; 

– разработать алгоритмы идентификации моделей по данным 

полунатурного моделирования с реальными системами ЛА. 
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Научная новизна проведенных исследований и полученных результатов 

заключается в следующем: 

1. разработан численный критерий степени идентифицируемости 

параметров нелинейных моделей динамических систем одного класса; 

2. разработаны алгоритмы идентификации математических моделей 

динамических объектов с улучшенными свойствами на основе метода 

группового учета аргументов (МГУА) и нейронной сети Вольтерра; 

3. разработан модуль комплекса полунатурного моделирования кабины-

тренажера ЛА, включающий нелинейные модели погрешностей инерциальных 

навигационных систем (ИНС), позволяющий повысить точность имитации 

моделируемых режимов полета;  

4. сформирована методика оценки точности построения моделей 

измерительных систем кабины-тренажера с использованием данных 

полунатурного эксперимента. 

Практическая ценность результатов диссертационной работы состоит в 

разработке способов и алгоритмов повышения точности моделирующего 

комплекса ЛА, основанных на применении высокоточных моделей, 

построенных с использованием методов нейронной сети Вольтерра и МГУА. 

Способ оценки точности построенных моделей позволяет осуществить выбор 

модели для каждого модуля комплекса полунатурного моделирования. 

Построение высокоточных нелинейных моделей погрешностей измерительных 

систем тренажера осуществляется за счет использования в алгоритме при 

селекции моделей оригинального численного критерия степени 

идентифицируемости, позволяющего отбирать модели-претенденты с 

повышенными характеристиками идентифицируемости параметров матрицы 

модели.  

Материалы диссертации использованы в работах ИНОЦ «Авионика», в 

работах при выполнении НИР в рамках Госзадания № 2.7486.2017/БЧ и в 

учебном процессе факультета «Информатика и системы управления» МГТУ 

им. Н.Э. Баумана. 

Достоверность полученных в диссертации результатов и выводов 

обеспечивается достаточно глубокой теоретической проработкой известных 

подходов, использованием апробированных методов, корректностью 

математических выводов при разработке алгоритмов идентификации, а также 

согласованностью полученных результатов с данными полунатурного 

моделирования с реальными ИНС и с известными данными, опубликованными 

в открытой печати. 
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Для исследований применялись методы теории управления и теории 

случайных процессов, теории самоорганизации, а также вычислительные 

методы, математическое и полунатурное  моделирование.  

Апробация работы. Результаты диссертации докладывались на научно-

методических семинарах, всероссийских и международных конференциях и 

симпозиумах: научном семинаре кафедры «Системы автоматического 

управления» МГТУ им. Н.Э. Баумана (Москва, 2016, 2017, 2018); XI 

Международной научно-практической конференции «EurasiaScience» (Москва, 

2017); II международной научно-практической конференции «Актуальные 

вопросы фундаментальных наук» (Москва, 2016); международной научно-

практической конференции «Достижение вузовской науки» (Москва, 2014, 

2016); XIX Международном симпозиуме «Уникальные феномены и 

универсальные ценности культуры»: «Человек – технологии – культура в эпоху 

глобализма» (Москва, 2016); международном симпозиуме «Современные 

аспекты фундаментальных наук» (Москва, 2015); Седьмой и Десятой 

Всероссийской конференции молодых ученых и специалистов «Будущее 

машиностроения России» (Москва, 2014, 2017); международной научно-

практической конференции «Теоретические и практические исследования ХХI 

века» (Москва, 2014); международной научно-практической конференции 

«Фундаментальные и прикладные исследования проблемы и результаты» 

(Москва, 2014). 

Публикации. Основные результаты диссертации изложены в 8 работах, 

из них 4 работы в изданиях, входящих в Перечень ВАК Минобрнауки РФ, 

объемом 5,25 п.л./ 2,35 п.л. 

Структура и объем работы. Диссертационная работа состоит из 

введения, четырех глав, заключения и списка литературы. Общий объем 127 

стр., содержит 30 рисунков, список литературы содержит 129 источников. 

КРАТКОЕ СОДЕРЖАНИЕ 

Во введении обоснована актуальность темы диссертации, 

сформулированы цель и определены задачи исследования, приведена структура 

диссертации. 

В первой главе представлен аналитический обзор систем и комплексов 

полунатурного моделирования, а также моделирующих комплексов тренажеров 

ЛА. Рассмотрены виды современных исследовательских тренажеров, 

концепции их построения, преимущества и недостатки при эксплуатации в 

исследовательских и образовательных целях.  

Представлены функциональные схемы моделирующих комплексов и 

выбрана структура с модульным методом построения моделирующего 

комплекса для дальнейшего совершенствования. 
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Сформулирована постановка задачи исследования. 

Вторая глава посвящена исследованию методов и алгоритмов 

идентификации, которые используются в модулях моделирующего комплекса. 

Рассмотрены алгоритмы идентификации: алгоритм идентификации, 

основанный на разложении Винера, алгоритм полиномов Вольтерра, нейронные 

сети, генетические алгоритмы (ГА), алгоритмы построения моделей, 

построенные на основе МГУА. Представлен анализ особенностей алгоритмов 

идентификации нелинейных систем и условия  применения. 

МГУА является эволюционным методом и реализует подход 

самоорганизации.  

Полное описание объекта: 

                                                = f1(x1, x2, x3, … , xi)                                                (1) 

следует заменить несколькими частными описаниями 

Y1=f1 (x1, x2), y1=f2 (x1, x3), ..., ym=f1 (xn-1, xn), где m=с
2

n; 

Z1=f1 (y1, y2), z2=f1 (y1, y2), ... , zp=f1(ym-1, ym), где p=c
2

m; 

И т.д. аналогичным образом. 

Отдельные алгоритмы МГУА существенно отличаются друг от друга по 

типу использования опорных функций, и, следовательно, по способу 

конструирования полного описания объекта. Основными являются алгоритмы с 

полиномом второй степени, алгоритмы с линейным полиномом и 

вероятностные алгоритмы. Алгоритмы с полиномом второй степени 

используются в задачах описания сложных и больших систем. 

На Рис. 1 представлена функциональная схема алгоритма 

самоорганизации с резервированием трендов.  

Рис. 1. Функциональная схема алгоритма самоорганизации с резервированием 

трендов 

 

На Рис. 1 введены следующие обозначения: f – базисные функции; AKC – 

ансамбль критериев селекции; C – способ скрещивания моделей-претендентов. 

АКС С
f

АКС С АКС С АКС

модель

оптимальной

сложности
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В результате анализа исследованных алгоритмов выделены наиболее 

перспективные для модернизации и использования в моделирующих 

комплексах. 

В третьей главе представлены способы оценки качества идентификации 

параметров моделей линейных стационарных и нестационарных динамических 

систем. Исследованы критерии степени идентифицируемости параметров 

моделей. Ввиду того, что для решения задач диссертационного исследования 

используются нелинейные алгоритмы идентификации, разработан численный 

критерий степени идентифицируемости параметров нелинейных моделей. 

Предложен оригинальный критерий степени идентифицируемости параметров 

нелинейных моделей одного класса динамических систем. К этому классу 

относятся системы, представимые с помощью SDC – метода (State Dependent 

Coefficient).  

Критерии степени идентифицируемости нелинейных систем. Пусть 

модель исследуемого процесса описывается векторным дифференциальным 

уравнением: 

                                  

0 0( ) ( , ) ( , ) ( ) , ( ) ;

( ) ( , ) ( );

, : , : ,

( , ) ( , ), ( , ), ( , ) ,

x x

n m

d
x t f t x g t x w t x t x

dt

y t h t x v t

f g T R h T R

t x f t x g t x h t x

  

 

   



                                 (2) 

где T − интервал; 
0 1

[ , ]t t ; ( ) Ωxx t   − область (открытое связанное множество) 

nR , содержащая начало; nRx  − состояние системы; 
0
Ωxx  ; nw R  − входное 

возмущение; nmRy m  ,  − измерение системы; mv R  − измерительный шум; 

матрицы ( , ), ( , ), ( , )f t x g t x h t x  действительны и непрерывны. 

На практике для удобства обработки информации часто используется 

дискретная форма системы, в которой SDC-представление нелинейной системы 

(2) имеет вид: 

                                   

1

1 1 1 1

( , ) ( , ) ;

( , ) .

k k k k k k k

k k k k k

t t

t



   

 

 

x Φ x x G x w

y H x x v
                                     (3) 

где kx  – вектор состояния; ( , )k ktΦ x  – матрица нелинейной модели системы; 

уk+1 – вектор измерений; Н(tk+1,xk+1) – матрица измерений; 
kw  и 

1kv  являются 

гауссовскими «белыми» некоррелированными шумами, причём для любых j  и 

k   выполняется 0T

j kM    v w . 
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Пусть уравнение объекта в SDC-представление и уравнение измерений 

имеют вид (3). В этом случае вектор состояния 
k nx  можно выразить его 

значением в начальный момент 
kx  времени в виде 

                        

1 1

1 1 1 1

1 1 1

( , ) ( , )

( , ) ( , ) ( , )

( , ) .

k n k n k n k k k

k n k n k k k k k

k n k n k n

t t

t t t

t

    

     

      

x = Φ x Φ x x

+Φ x Φ x G x w

G x w
                     

(4) 

Подставив выражение для 
k nx  в уравнение измерений 

k ny , а также 

подставив в полученное уравнение выражение 
kx , получим 

                     

1 1

1 1

1 1 1 1

1 1 1

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ,

k n k n k n k n k k k k

k n k n k n k k k k

k n k n k n k k k k k

k n k n k n k n k n

t t

t t

t t t

t

 

     

 

    

      

       



  

y = H Φ x Φ x O y

H Φ x Φ x O v

+H Φ x Φ x G x w

H G x w v
                     

(5) 

где 
1

T T

k k k k


      O O O O  − псевдообратная матрица k


O . 

Введём обозначения 

           1, 2, , 1 1( , ) ( , ) .k k n k k n k n k n k k kt t   

       H Φ x Φ x O
             

(6) 

                           

0

1, 2, 1 , 1

1, 2, 1 , 1

1 1

1 1 1

( , ) ( , )

( , ) .

k k k k k n k k n

k k k k n k k n k n

k n k n k n k k k k

k n k n k n k n k n

t t

t

  

  

  

   

 

    

       

   

    



  

v w w w

v v v v

H Φ x Φ x O v

H G x w v
                            

(7) 

Тогда постановка задачи сводится к определению неизвестных 

нестационарных элементов вектора-столбца 1, 2, ,k k n k      по вновь 

сформированным измерениям, т.е. 

                                     

 

 

 

00

1, 1, 2 1

00

2, 2, 2 1 1

00

, , 2 1 1

, , ;

, , ;

, , ,

k k k k n k

k k k k n k

n k n k k k n k n

f y y v

f y y v

f y y v







 

  

   

 

 

 
                                   

(8) 

где 
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 

 

 

1

1, 2 1 1 1

2, 2 1 1 2 1

, 2 1 1 2 2 2 1

, ,

, ,

, ,

k k k n k k k n k n

k k k n k k k n k n

n k k k n k n k n k n k n

f y y y y y y

f y y y y y y

f y y y y y y



     

      

        

     
     
     
     
     

    

; 

100 0
1 1

00 0
1 21 1

00 0
1 2 21 1

k k k nk k

k k k nk k

k n k n k nk n k n

y y yv v

y y yv v

y y yv v



  

   

       

    
    
    
    
    

    

. 

Поэтому критерий степени идентифицируемости параметров модели 

динамических нестационарных систем имеет вид: 

                                                   

 

 

2

, 0

2

,
ˆ

i k
i

Nk
i

i k k

E R
DI

E y R

 
 
 
 

,                                                  (9) 

где  
2

,i kE  
 

 ‒ дисперсия произвольной i-ой компоненты вектора параметров 

 ;  
2

,i kE z 
 

 ‒ дисперсия непосредственно измеряемого вектора состояния; 
0R

– дисперсия исходного измерительного шума; ˆ i

kR  ‒ дисперсия приведённого 

измерительного шума. 

Таким образом, формализованная зависимость (9) используется для 

определения степени идентифицируемости параметров матрицы ( , )k ktΦ x . 

Дисперсия исходного измерительного шума определяется из 

практических соображений в соответствии с режимом работы измерительной 

системы или принимается значение из паспорта измерительного прибора. 

Определённые сложности возникают при вычислении приведённого 

измерительного шума. Однако при использовании адаптивного алгоритма 

оценивания дисперсия приведённого измерительного шума вычисляется на 

каждом шаге функционирования алгоритма. Качество идентификации или 

эффективности идентификации определяется максимально достижимой 

точностью идентификации и необходимым временем достижения заданной 

точности идентификации. 

Четвертая глава посвящена разработке алгоритмов идентификации. 

Предложена модификация алгоритма идентификации, построенного на основе 
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МГУА с использованием численного критерия степени идентифицируемости 

параметров нелинейной модели, включенного в ансамбль критериев селекции.  

В представленном алгоритме МГУА в процессе селекции отбираются 

модели, имеющие максимальные степени идентифицируемости. 

Разработанный алгоритм позволяет строить модели исследуемых 

процессов с улучшенными качественными характеристиками. Повышение 

качества моделей достигается за счет того, что отбираются модели для 

дальнейшей селекции, позволяющие проводить более точную параметрическую 

идентификацию.   

Разработан алгоритм идентификации посредством нейронной сети 

Вольтерра с использованием МГУА. Нейронные сети позволяют построить 

модели исследуемых процессов с достаточно высокой точностью, но при этом 

требуют длительного времени для реализации процесса обучения. Недостатком 

сети Вольтерра при реализации на борту реальных ЛА или имитаторов ЛА 

является длительный процесс обучения нейронной сети на начальном этапе ее 

функционирования. Для адекватного задания начальных значений весовых 

коэффициентов нейронной сети использован МГУА, что значительно ускоряет 

процесс обучения нейронной сети. 

Представлен алгоритм построения модели динамического объекта, 

способный адекватно задать начальные значения весовым коэффициентам 

нейронной сети, что значительно ускоряет процесс ее обучения. Рассмотрен 

алгоритм оптимизации структуры сети Вольтерра, также ускоряющий обучении 

нейронной сети. 

МГУА определяет веса связей, причём для каждого сочетания функций 

строится модель вида: 

                                         
1

2
1

10
  i

l
i
k

i
m FbFbbF ,                                         

(10) 

где i – номер шага алгоритма, а k, l, m – индексы функций внутри наборов 

i-го и «i-1»-го шага алгоритма, причём индекс «k» не должен совпадать с «l».  

Основным неудобством нейронной сети является случайный выбор 

первоначальных значений весов связей, который приводит к 

продолжительному обучению сети. Предлагается сначала проводить поиск 

приближённого минимума погрешности при помощи МГУА, а затем 

инициализировать веса связей нейронной сети полученными значениями из 

МГУА, и далее находить более точное приближение с помощью обучения 

нейронной сети. 

Типом нейронной сети, имеющей подходящую структуру для 

комбинации с МГУА, является сеть Вольтерра. Эта нейронная сеть позволяет 
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использовать результат работы МГУА как начальную точку для обучения 

нейронной сети. 

Сеть Вольтерра используется для определения весовых коэффициентов 

функции вида: 

 






































  

  



 







  



L

i

L

j

L

k

ijkknjnin

L

i

L

j

ijjnin

L

i

iin

L

i

L

j

L

k

ijkknijjniin

wxxxwxxwxy

илиwxwxwxy

0 0 00 00

0 0 0

,

 
         (11)                          

 

Здесь x – измерительные сигналы, составляющие входной вектор для 

нейронной сети; y – выходной сигнал нейронной сети; l+1 – размерность 

входного вектора. 

Различные комбинации произведений ...knjnin xxx 
 
дублируют друг 

друга. Для ускорения работы алгоритма и для соответствия с МГУА 

необходимо объединить эти, дублирующие друг друга, члены. В результате 

работы полной нейронной сети будет получено n одинаковых коэффициентов 

при одной  и той же базисной функции. Если оставить в рассмотрении только 

один член разложения, то, при тех же условиях, получается один коэффициент, 

который будет выглядеть следующим образом  

ijkijk
Nww 

(*)

 

Исключение из структуры нейронной сети повторяющихся базисных 

функций позволяет сократить размер сети, а, следовательно, и объём 

вычислений. Для исключения повторения базисных функций используется 

следующий прием: произведение упорядочивается по индексам участвующих 

сигналов x; в таком случае, чтобы базисная функция не встречалась чаще 

одного раза, достаточно генерировать функции в соответствии с простым 

алгоритмом. Разработана редуцированная сеть Вольтерра без использования 

повторяющихся произведений. 

Разработанные алгоритмы использованы для построения математических 

моделей, которые имитируют особенности работы исследуемых систем при 

различных режимах полета ЛА.  
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Совокупность полученных моделей представляет собой базу данных, 

которая использована в алгоритмическом обеспечении кабины-тренажера ЛА 

для имитации работы отдельной системы. В алгоритмическом обеспечении 

кабины-тренажера база данных моделей сформирована в виде отдельного 

модуля и использована в комплексе модульного полунатурного моделирования 

кабины-тренажера ЛА. 

Пятая глава посвящена экспериментальным исследованиям.  

Обычно в моделирующем комплексе кабины-тренажера ЛА 

используются модели динамики основных процессов, например режимы 

работы ИНС. Погрешности используемых систем не моделируются и не 

учитываются. Кабина-тренажер ИНОЦ «Авионика» является 

исследовательским тренажером, поэтому для более детального изучения 

особенностей функционирования систем ЛА в различных режимах 

целесообразно детально исследовать системы и строить более точные модели с 

учетом присущих им погрешностей. В качестве примера исследован процесс 

изменения погрешностей ИНС, с помощью разработанных алгоритмов 

построены модели погрешностей ИНС, возникающие при различных основных 

режимах работы ИНС. Совокупность полученных моделей, сгруппированных в 

базе данных моделей, использована в виде дополнительного элемента 

моделирующего модуля ИНС.  

Функциональная схема модифицированного модуля ИНС представлен на 

рис. 2. 

 

Рис. 2. Функциональная схема модифицированного модуля ИНС 

На Рис. 2 введены следующие обозначения: u – вектор управления; y – 

вектор состояния, включающий параметры моделируемого ЛА; Θ – выходной 

сигнал блока модели ИНС; x – вектор погрешностей ИНС. 



12 

База данных моделей ошибок ИНС содержит модели, построенные с 

помощью модифицированного алгоритма МГУА. При имитации нового режима 

полета на основе информации с блоков «модель ЛА» и «модель ИНС» 

осуществляется выбор модели погрешностей ИНС, соответствующей 

моделируемому режиму. На приборную панель и в контур моделирующего 

комплекса поступает уточненный сигнал, представляющий собой смесь 

истинной информации и погрешности ИНС.  

Представлено описание проведения полунатурного эксперимента с 

реальными навигационными системами, который использован для повышения 

точности моделирующего комплекса кабины-тренажера ЛА. Исследован 

процесс реализации идентификации нейросетью Вольтерра с МГУА и МГУА с 

критерием параметрической идентифицируемости.  

Полученные модели используются в банке данных моделирующего 

комплекса в виде отдельных модулей для каждого имитируемого режима 

полета ЛА. Схема формирования базы данных моделей представлена на рис. 3.  

 

ИНС МГУА

Банк 

данных 

моделей

МГУА

Z Xk=Ф1Xk-1

Xk=Ф2Xk-1

ИНС

Zψ

 

Рис.3. Схема формирования базы данных моделей 

Предложен способ оценки точности алгоритмов идентификации на 

основе анализа точности полученной модели с использованием данных 

полунатурного моделирования. 

Полученную после идентификации модель для проверки адекватности 

необходимо сравнить с реальным сигналом, полученным с ИНС в процессе 

полунатурного эксперимента рис.4.  
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3

4

 

Рис. 4. Погрешности ИНС в определении скорости, полученные с реальной 

системы и с помощью идентифицированной модели 

На Рис. 4 введены обозначения: 1 – измерения реальной ИНС; 2 – модель 

МГУА; 3 – линейная априорная модель; 4 – нелинейная априорная модель. 

При проверке адекватности модели неизмеряемых компонент вектора 

состояния, например скорости дрейфа ГСП ИНС оценки неизмеряемой 

компоненты с помощью фильтра Калмана сравниваются с 

идентифицированной моделью. Для этого применяются формулы, 

связывающие непосредственно неизмеряемые компоненты вектора состояния с 

измеряемым сигналом ИНС. 

Погрешности ИНС в определении широты и долготы, полученные в 

результате эксперимента, сравниваются с аналогичными расчетными 

погрешностями, полученными путем вычисления по построенной МГУА 

модели. Результаты моделирования представлены на Рис. 5. 

1 2 3 4 5

2

t

λ

1

10-4 рад.
1

3

2

z

 
Рис. 5. Результаты моделирования по данным лабораторного эксперимента с 

реальной ИНС, НС и модифицированного МГУА 



14 

На Рис. 5 обозначено: 1 – ошибки в определении долготы местности, 

полученные в процессе лабораторного эксперимента; 2 – оценки погрешностей 

реальной ИНС, полученные с помощью НС; 3 – оценки ошибок реальной ИНС, 

полученные с помощью МГУА. 

При проведении математического моделирования использована типовая 

модель ошибок платформенной ИНС, предполагающая установку 

акселерометров на гиростабилизированной платформе (ГСП). Модель имеет 

вид:  

                                                   
 1k k k k x Φ x w

                                              
(12) 

где 
kx  – вектор состояния,  1k kΦ x  – нелинейная матрица модели, и  

;

k

k k

k

V

x







 
 


 
  

 1

1

0k

k

B

W







 
 


 
  

 

Здесь kV – ошибки ИНС в определении скорости, k – углы отклонения 

ГСП от сопровождающего трехгранника, k – скорость дрейфа ГСП; B – 

смещение нуля акселерометра, B = 10
-2

; 1kW  – дискретный аналог белого 

гауссового шума. 

При моделировании предполагается, что измеряется только погрешность 

в определении скорости. В качестве примера приведены результаты 

моделирования погрешностей ИНС при горизонтальном полете с постоянной 

скоростью. На Рис. 6 представлены результаты моделирования угла отклонения 

ГСП ИНС относительно сопровождающего трехгранника выбранной системы 

координат и модели этой погрешности, построенные с помощью алгоритмов 

МГУА.  

 

Рис. 6. Погрешность определения угла отклонения ГСП относительно 

сопровождающего трехгранника и его модели, построенные МГУА 
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На Рис. 6 введены следующие обозначения: 1– угол отклонения ГСП 

относительно сопровождающего трехгранника, полученный с помощью 

тестовой модели; 2 – угол отклонения ГСП, полученный с помощью модели 

МГУА с критерием степени идентифицируемости; 3 – угол отклонения ГСП, 

полученный с помощью модели классического МГУА.  

На интервале времени 0–Т осуществляется формирование измерительной 

выборки для МГУА. Результаты вычисления угла отклонения ГСП ИНС с 

помощью полученной модели классического МГУА и МГУА с критерием 

степени идентифицируемости  продемонстрировали преимущество последнего.  

Полученные с помощью разработанного МГУА модели ошибок ИНС при 

имитации различных режимов полета, используются для формирования базы 

данных моделей в моделирующем комплексе кабины-тренажера ЛА. 

По сравнению с классическим МГУА разработанный алгоритм 

обеспечивает повышение точности идентификации параметров модели 

погрешностей ИНС на ограниченном интервале времени в среднем на 5%. 

Редуцированная сеть Вольтерра обеспечивает ускорение построения 

моделей заданной точности по сравнению с нейросетью Вольтерра в среднем 

на 7-10%. 

Разработанные алгоритмы легко реализуемы в серийных БЦВМ в 

отведенном для них объеме памяти.  

В заключении приведены основные результаты работы. 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ 

1. Разработана функциональная схема моделирующего комплекса для кабины-

тренажера ЛА с использованием модульного метода. 

2. Разработан численный критерий степени идентифицируемости параметров 

одного класса нелинейных моделей динамических процессов, базирующийся 

на SDC-представлении. 

3. Разработан алгоритм идентификации на основе метода МГУА, в ансамбль 

критериев селекции которого включен критерий степени идентифицируемости 

параметров модели исследуемого процесса. 

4. Разработан алгоритм идентификации, являющийся комбинацией нейронной 

сети Вольтерра и алгоритма самоорганизации.  

5. Разработан способ оценки точности алгоритмов идентификации с 

использованием данных полунатурного эксперимента, основанный на анализе 

точности построенных моделей.  

6. Разработан дополнительный модуль моделирующего комплекса 

исследовательской кабины-тренажера ЛА, основанный на математических 

моделях погрешностей ИНС, полученных по результатам обработки данных 

лабораторного эксперимента.  
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Перспективы дальнейшей разработки темы. Для проведения 

дальнейших исследований предполагается разработка комплекса 

алгоритмического обеспечения авионики ЛА с использованием интеллектуальных 

технологий и их отработка методами модульного полунатурного моделирования 

на исследовательском кабине-тренажере ЛА. 
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