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1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы.
Применение стабилизированного по частоте оптического излучения

для измерения интервалов времени стало возможным после появления
сравнительно простых средств калибровки оптических стандартов ча-
стоты (ОСЧ) по частоте цезиевого эталона, определяющего секунду.
Относительная погрешность современных ОСЧ находится в диапазоне
от 1 · 10−17 до 1 · 10−13, причем погрешность, вносимая при переходе в
радиодиапазон, составляет 1 · 10−19 (деление частоты происходит с помо-
щью фемтосекундного лазера). В ОСЧ, как правило, излучение лазера
проходит через кювету, содержащую реперный газ. По изменению фазо-
вой задержки или величине поглощения лазерного излучения определя-
ют отклонение частоты лазера относительно реперной линии. Ключевым
фактором для повышения точности, стабильности и воспроизводимости
оптической частоты является правильный выбор реперного газа и кон-
кретной реперной спектральной линии, а также метода её регистрации.

С 70-х годов ХХ века важное место среди прочих занимает группа
методов нелинейной лазерной спектроскопии, в частности - метод двух-
модовой насыщенной дисперсии. ОСЧ, работающий по этому методу,
включает в себя лазер и внутрирезонаторную ячейку с реперным газом,
выполненные в виде единого ситаллового моноблока. Особенности кон-
струкции резонатора приводят к генерации двух продольных мод с фик-
сированным частотным смещением, так что при совпадении одной моды
с реперной линией, другая мода оказывается вне линии. Модуляция оп-
тической частоты, происходящая за счет изменения длины резонатора,
позволяет произвести опрос реперной спектральной линии. Большинство
внешних воздействий на резонатор действуют на обе моды одинаково и
компенсируются в процессе получения сигнала разностной частоты - ча-
стоты межмодовых биений. Сигнал частоты биений (от 1 до 100 МГц)
преобразуется на частотном, а затем синхронном, детекторах в сигнал
ошибки, используемый в контуре стабилизации частоты для подстройки
длины резонатора.

Одним из путей снижения погрешности частоты выходного сигна-
ла ОСЧ является использование априорной информации о параметрах
модуляции частоты в процессе частотного детектирования. Необходи-
мость регистрации частоты биений в условиях модуляции оптической
частоты не позволяет использовать стандартные методы, так называ-
емого, преобразования время-код и требует разработки оригинального
аппаратно-алгоритмического технического решения, учитывающего осо-
бенности поведения оптической частоты.

Методы нелинейной лазерной спектроскопии, включающие в себя
цифровое частотное детектирование, активно используются в Физиче-
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ском институте РАН им. Н.П. Лебедева, ФГУП «ВНИИФТРИ», ФГУП
«ВНИИМ им. Д.И. Менделеева», Институте лазерной физики СО РАН,
немецком (PTB) и американском (NIST) национальных метрологических
институтах, в МГТУ им. Н.Э. Баумана. Среди отечественных разработок
наиболее низкую относительную погрешность частоты выходного сигна-
ла ОСЧ (менее 1 · 10−14 при интервале усреднения 1 с) в сочетании с
небольшими габаритами демонстрируют две системы - йодный ОСЧ на
алюмоиттриевом гранате и метановый ОСЧ на гелий-неоновом лазере.

Метановый ОСЧ демонстрирует дрейфы частоты, возникающие из-за
температурой нестабильности оптического моноблока и его содержимого
- активной среды и реперного газа. Это приводит к ограничению времени
непрерывной работы частотного детектора и снижению стабильности оп-
тической частоты при времени усреднения более 2 c и более. Указанный
эффект требует обязательного рассмотрения с точки зрения обеспечения
длительного и непрерывного частотного детектирования.

В этой связи тема исследования, посвященная снижению относитель-
ной нестабильности частоты выходного сигнала ОСЧ на основе метода
двухмодовой насыщенной дисперсии, в том числе за счет снижения по-
грешности измерения частоты при помощи частотного детектирования,
является актуальной.

Цель работы и задачи исследований

Цель диссертационной работы заключалась в исследовании погреш-
ности измерения частоты при помощи частотного детектирования с ис-
пользованием априорных данных о параметрах модуляции и ее влия-
нии на стабильность частоты выходного сигнала оптического стандарта
частоты на основе метода двухмодовой насыщенной дисперсии и раз-
работке аппаратуры, реализующей технические решения, полученные в
процессе исследования.

Для достижения поставленной цели в диссертационной работе реше-
ны следующие задачи:

– проведен анализ факторов, влияющих на величину погрешности ча-
стоты выходного сигнала ОСЧ и показано, что модернизированная
реализация частотного детектирования позволяет снизить величину
погрешности до уровня, эквивалентного относительной погрешности
частоты ОСЧ 1 · 10−15 при интервале усреднения 1 с;

– исследованы особенности длительной непрерывной работы метаново-
го ОСЧ и показано, что термостабилизация его моноблока позволяет
повысить время непрерывной работы частотного детектирования с
дней до недель и снизить относительную нестабильность частоты
выходного сигнала при интервале усреднения более 10 с;

– разработаны экспериментальные образцы модернизированного ча-
стотного детектора и системы термостабилизации, и проведены экс-
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периментальные исследования, подтверждающие теоретические рас-
четы.
Объектом исследования является оптический стандарт частоты на

основе метода двухмодовой насыщенной дисперсии.
Предметом исследования процесс частотного детектирования в оп-

тических стандартах частоты на основе метода двухмодовой насыщенной
дисперсии.

Методы исследований
При решении теоретических и прикладных задач были использованы:

методы теории вероятности и математической статистики, методы мате-
матического моделирования, методы теории автоматического регулиро-
вания, методы анализа процессов теплопередачи, методики измерения
стабильности эталонных оптических частот.

Научная новизна результатов заключается в том, что:
– показано, что цифрового частотное детектирование с использовани-

ем априорных данных о параметрах модуляции частоты обеспечива-
ет погрешность автоподстройки частоты эквивалентную относитель-
ной нестабильности частоты ОСЧ величиной 1 · 10−15 при интервале
усреднения 1 с;

– установлено, что время непрерывной работы частотного детектиро-
вания в метановом стандарте частоты ограничено 1-2 днями из-за
дрейфа температуры ситаллового моноблока;

– обнаружено, что преобладающий долговременный дрейф частоты ме-
танового ОСЧ имеет нетемпературное происхождение.
Положения, выносимые на защиту:

– применение в метановом ОСЧ цифрового частотного детектирования
с использованием априорных данных о параметрах модуляции часто-
ты обеспечит погрешность автоподстройки частоты эквивалентную
относительной нестабильности частоты ОСЧ 1 · 10−15 при интервале
усреднения 1 с;

– термостабилизация моноблока метанового стандарта частоты с по-
грешностью температуры ниже ±0, 01°𝐶 позволяет увеличить время
непрерывной работы частотного детектирования до недель и снизить
относительную нестабильность частоты ОСЧ при интервалах усред-
нения более 10 с.
Практическая ценность:

– разработанная аппаратура для частотного детектирования может
быть использована в новых образцах ОСЧ, основанных на методах
спектроскопии насыщения, для снижения их относительной неста-
бильности частоты при интервале усреднения 1 с;

– применение разработанной системы термостабилизации обеспечива-
ет возможность выявления и изучения нетемпературных эффектов,
возникающих в стандарте частоты при длительной эксплуатации;
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– возможность перестройки температуры со скоростью 0, 02 °C
сек позво-

ляет осуществить исследование влияния температуры на различные
элементы метанового ОСЧ и измерить температурный коэффициент
частоты, необходимый для оценки характеристик стандарта в нела-
бораторных условиях.
Реализация и внедрение результатов исследований
Результаты диссертации внедрены в Лаборатории стандартов часто-

ты Троицкого обособленного подразделения Физического института им.
П.Н. Лебедева РАН при создании нового образца метанового ОСЧ,
а также при создании систем прецизионной термостабилизации лазе-
ров в НОЦ «Фотоника и ИК-техника» МГТУ им. Н.Э. Баумана. Ма-
териалы диссертации использованы в курсе лекций для иностранных
специалистов кафедры лазерных и оптико-электронных систем МГТУ
им. Н.Э. Баумана.

Апробация результатов работы
Основные результаты работы докладывались на научно-технических

конференциях: IV Всероссийской конференции «Фундаментальное и
прикладное координатно-временное и навигационное обеспечение» (г.
Санкт-Петербург, Институт прикладной астрономии РАН, 2011г); меж-
дународной конференция «Frontiers in optics» (г.Сан-Хосе, Калифор-
ния, США, 2015г); V Всероссийской конференции по фотонике и ин-
формационной оптике (г. Москва, НЯУ МИФИ, 2016г); международ-
ной конференции «Laser Optics» (г.Санкт-петербург, Россия, 2016г);
VIII Всероссийской научно-технической конференции «Актуальные про-
блемы ракетно-космического приборостроения и информационных тех-
нологий» (г. Москва, АО «Российские космические системы», 2016г);
XXVIII международной конференции «Лазеры в науке, технике, меди-
цине»; международной конференции «Laser Optics» (г.Санкт-Петербург,
Россия, 2018г).

Публикации
Основные результаты диссертации опубликованы в 6 статьях, из

них 5 опубликованы в журналах, входящих в перечень ВАК РФ.
Структура и объём работы
Диссертация состоит из введения, трёх глав и заключения и изло-

жена на 180 страницах машинописного текста, включая 83 рисунка, 17
таблиц и список литературы, содержащий 93 наименования.

2. СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной рабо-
ты, сформулированы цель и задачи исследований, научная новизна и
практическая ценность. Также сформулированы защищаемые положения
и приведена структура диссертации.
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В первой главе проведен обзор основных научно-технических задач,
которые могут быть решены при помощи оптических стандартов часто-
ты: измерение временных интервалов в наземной и бортовой аппаратуре
глобальных навигационных систем; синхронизация телекоммуникацион-
ных систем и зашифрованная передача данных; фундаментальные мет-
рологические научные задачи; синхронизация узлов интерферометров со
сверхдлинной базой; геодезия и навигация в глубоком космосе; создание
рабочих стандартов частоты и прочее.

Рассмотрен класс транспортабельных оптических стандартов часто-
ты, имеющих конечной целью размещение эталонных источников в кос-
мосе. Проблемы, возникающие при переходе от лабораторных условий к
более жестким, приводят к значительной трудоемкости такого перехо-
да. В результате за время разработки транспортабельной версии более
ранней технологии, в лабораторном исполнении успевает появиться кон-
курирующий стандарт частоты, имеющий более низкую погрешность. В
Таблице 1 приведен ряд транспортабельных стандартов частоты на раз-
ных стадиях разработки и, соответственно, обладающих разным уровнем
стабильности частоты (количественно выражена девиацией Аллана для
относительной погрешности выходной частоты).

Таблица 1.
Транспортабельные оптические стандарты частоты

Оптический
стандарт
частоты

Nd:YAG/I2
(ZARM)

87Sr (PTB)
He-Ne/CH4

(ФИАН)
Nd:YAG/I2

(ИЛФ)

Кратковременная
девиация
Аллана

3 · 10−14 1√
𝜏

1, 3 · 10−15 1√
𝜏

7 · 10−15 1√
𝜏

5 · 10−15 1√
𝜏

Долговременная
девиация
Аллана

—
7, 4 · 10−17

(𝜏 = 250 с)
5, 0 · 10−15

(𝜏 = 5 с)
2, 0 · 10−16

(𝜏 = 500 с)

Лабораторное
использование

ДА ДА ДА ДА

Наземное
перемещение

ДА ДА НЕТ НЕТ

Запуск на
спутнике

ДА НЕТ НЕТ НЕТ

Наиболее близким к космическому базированию является немецкий
Nd:YAG/I2, обладая при этом стабильностью сопоставимой с традици-
онными стандартами частоты радио диапазона. Немецкий стандарт на
атомной ловушке выполнен в виде прицепа со всеми необходимыми си-
стемами обеспечения и допускает наземное перемещение. Российские
стандарты частоты на методах спектроскопии насыщения, разработан-
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Рисунок 1. Структурная схема модернизированного метанового ОСЧ
(ЦЧД – цифровой частотный детектор, ОУ – операционный усилитель,

ФД - фотодиод, ПК - персональный компьютер)

ные в ФИАН (г.Троицк) и ИЛФ (г.Новосибирск), обладают более высо-
кой стабильностью частоты, но эксплуатация вне лаборатории пока не
обеспечена.

ОСЧ на основе He-Ne лазера и метановой ячейки (МОСЧ) выпол-
нен в виде единого ситаллового моноблока. Низкий термический коэф-
фициент материала в сочетании с двухмодовой схемой снижает, но не
устраняет полностью воздействие внешней температуры на стабильность
частоты. Полученные результаты (таблица 1) и компактность конструк-
ции говорят о перспективности использования метанового стандарта при
условии устранения имеющихся недостатков. К недостаткам можно отне-
сти следующие факторы - высокая погрешность автоподстройки частоты
гелий-неонового лазера при осуществлении частотного детектирования,
определяющая работу при интервале усреднения 1 с, а также ухудшение
стабильности частоты при интервалах усреднения более 10 с и невоз-
можность длительной непрерывной работы из-за колебаний температуры
окружающей среды.

Для устранения указанных недостатков в работе предложено исполь-
зовать частотное детектирование с использованием априорных данных
о параметрах модуляции, реализуемое цифровым способом. Для увели-
чения времени непрерывной работы частотного детектора и повышения
долговременной стабильности частоты стандарта предложено использо-
вать прецизионную систему термостабилизации моноблока. Схема мо-
дернизированного метанового стандарта частоты приведена на рисунке 1.

Вторая глава посвящена, во-первых, расчету и исследованию частот-
ного детектора с использованием априорных данных о параметрах моду-
ляции и, во-вторых, созданию системы термостабилизации моноблока.
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Рисунок 2. Функциональная схема системы автоматического
регулирования частоты биений метанового ОСЧ с цифровым ЧД

Погрешность детектирования частоты биений – результата оптиче-
ского гетеродинирования двух мод метанового ОСЧ – при аналоговом
частотном детектировании определяется внешними амплитудными поме-
хами и собственными шумами компонентов. Поэтому суть модернизации
автоподстройки частоты состоит в частотном детектировании сигнала ча-
стоты биений на более ранней стадии, а также в переходе на цифровой
счет частоты, использующий априорные данные о параметрах модуля-
ции. Преимуществами цифрового счета являются возможность эффек-
тивного накопления сигнала, параллельных вычислений, а также вос-
производимость и гибкость системы.

Существующий метановый ОСЧ использует аналоговый частотный
детектор для захвата РСЛ. Компьютерное моделирование аналоговой ре-
ализации ЧД посредством симулятора электронных схем общего назна-
чения показало, что схема близка к своему теоретическому пределу, с
дискриминационным коэффициентом на уровне 0,4 мкВ/Гц, что ниже
значений, показанных в литературе для цифрового счёта частоты (от 1
до 1000 мкВ/Гц).

Рассмотрение функциональной схема системы автоматического ре-
гулирования, осуществляющей захват линии (Рисунок.2) показало, что
аналогово-цифровое преобразование частоты доступно после детектиро-
вания на фотодиоде (поз.11) и фильтрации (поз.5). Анализ оптической
части системы показал, что внесение качественных изменений в её ра-
боту при использовании цифрового ЧД не требуется.

Время-цифровое преобразование (ВЦП) входного сигнала цифрового
ЧД вида (1) состоит из двух частей - измерение длительностей вре-
менных промежутков и детектирование событий, означающих начало и
конец счета. Измерение длительности осуществляется известными алго-
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ритмами ВЦП, однако необходимое детектирование событий в них от-
сутствует, что требует оригинального подхода при разработке алгоритма.

𝑦(𝑡) =
1

2
· (𝑠𝑔𝑛(sin(Ω0

1 + 𝐴𝐹𝑀 · (cos(Ω𝐹𝑀 · 𝑡)))) + 1) (1)

Предложены три алгоритма, реализующие процесс синхронного и ча-
стотного детектирования - последовательный, комбинированный и асин-
хронный. Суть последовательного алгоритма заключается в выполнении
двух операций - частотное детектирование и синхронное детектирова-
ние (аналогично аналоговому подходу). Погрешность алгоритма высокая
и соответствует девиации Аллана 𝜎𝑎(1) = 3, 4 · 10−11. Комбинированный
алгоритм осуществляет накопление сигнала за половину периода моду-
ляции и без прямого измерения частоты осуществляет синхронное де-
тектирование. Достижимая девиация Аллана при этом составляет уже
𝜎𝑎(1) = 1, 4 · 10−13. Реализация алгоритмов происходит посредством про-
граммируемых логических интегральных схем (ПЛИС). Предваритель-
ная проверка работы разработанной структуры ПЛИС с помощью спе-
циальных средств моделирования показала работоспособность, чувстви-
тельность комбинированного алгоритма и вспомогательного ЧД, а также
реакцию на процесс вращения фазы при синхронном детектировании.

Комбинированный алгоритм в одноканальном виде не позволяет до-
стичь необходимой для нового метанового ОСЧ девиации Аллана, поэто-
му рассмотрены возможности использования параллельных вычислений
для снижения погрешности работы алгоритма.

Предложены несколько способов реализации параллельных вычис-
лений – параллельные каналы (п-каналы), каскадированные каналы
(к-каналы) и асинхронный алгоритм. П-каналы счета - это смещен-
ные по фазе тактовые сигналы, использование которых эквивалентно
кратному увеличению основной тактовой частоты. Максимальное число
параллельных каналов 𝑁𝑚𝑎𝑥

𝑐ℎ определяется из условия минимального
фазового сдвига ФАПЧ 𝑑𝜙𝑚𝑖𝑛

𝑝𝑙𝑙 :

𝑑𝜙𝑚𝑖𝑛
𝑝𝑙𝑙 =

𝑇𝑉 𝐶𝑂

8
=

1

8𝜈𝑉 𝐶𝑂
=

𝑁

8𝑀 · 𝜈𝑟𝑒𝑓_𝑝𝑙𝑙
,

где 𝑀 - внутр. множитель ФАПЧ, 𝑁 - внутр. делитель ФАПЧ,
𝜈𝑟𝑒𝑓_𝑝𝑙𝑙 - опорная частота ФАПЧ, 𝜈𝑉 𝐶𝑂 - вых. частота ГУН ФАПЧ

𝑁𝑚𝑎𝑥
𝑐ℎ =

𝑇 𝑐𝑙𝑘
плис

𝑑𝜙𝑚𝑖𝑛
𝑝𝑙𝑙

=
8𝑀 · 𝜈𝑟𝑒𝑓_𝑝𝑙𝑙

𝑁 · 𝜈𝑐𝑙𝑘плис
,

где 𝜈𝑐𝑙𝑘плис(𝑇
𝑐𝑙𝑘
плис) - основная тактовая частота (период).

Для выбранной микросхемы число каналов составило 𝑁 = 16. В слу-
чае коррелированного шума при накоплении, учет п-каналов в расчетной
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девиации Аллана описывается выражением:

𝜎𝑦+ =
𝜎𝑇𝐹𝑀
𝑦

𝑁𝑝𝑎𝑟 ·𝑁
, (2)

где 𝑁 - число измерений за 1 с, 𝑇𝐹𝑀 - период модуляции,
𝑁𝑝𝑎𝑟 - число параллельных каналов счёта,

𝜎𝑇𝐹𝑀
𝑦 - девиация Аллана для комбинированного алгоритма.

Суть работы к-каналов в особенности накопления данных. Следую-
щий этап счета начинается, не дожидаясь окончания предыдущего цик-
ла. Входные данные при этом оказываются частично коррелированы,
однако шумовая составляющая входных данных, остается некоррелиро-
ванной. В результате за один период модуляции вместо одиночного из-
мерения получаем число измерений равное 𝑁𝑐𝑠 - числу к-каналов, при-
водя к ускоренному накоплению данных и более эффективной работе
статистической обработки. Достижимая девиация Аллана в этом случае
описывается выражением:

𝜎𝑦+ =
𝜎𝑇𝐹𝑀
𝑦

𝑁 ·
√
𝑁𝑐𝑠

, (3)

где 𝑁 - число измерений за 1 с, 𝑇𝐹𝑀 - период модуляции,
𝑁𝑐𝑠 - число каскадированных каналов счёта,

𝜎𝑇𝐹𝑀
𝑦 - девиация Аллана для комбинированного алгоритма.

Ограничением числа к-каналов является объём используемой микросхе-
мы, а также частота работы выходного ЦАП. Для используемой версии
ПЛИС максимальное число к-каналов составило 𝑁 = 60.

Асинхронный алгоритм может использоваться как способ снижения
величины шума при использовании комбинированного алгоритма как ос-
новного. Анализ показал, что достижимое снижение погрешности соста-
вило 𝑘 = 17, 7, а влияние на достижимую девиацию Аллана описывается
выражением:

𝜎𝑦+ =
𝜎𝑇𝐹𝑀
𝑦

𝑘 ·
√
𝑁
, (4)

где 𝑁 - число измерений за 1 с, 𝑇𝐹𝑀 - период модуляции,
𝑘 - коэффициент асинхронного алгоритма,

𝜎𝑇𝐹𝑀
𝑦 - девиация Аллана для комбинированного алгоритма за 𝑇𝐹𝑀 .

Итоговая структура параллельных вычислений представляет собой
комбинацию рассмотренных выше алгоритмов. При реализации асин-
хронный алгоритм и п-каналы используют одни и те же вычислительные
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ресурсы, поэтому совместное их использование невозможно. Возможны
две схемы параллельного счета. Предельно достижимая девиация Ал-
лана при асинхронном алгоритме совместно с к-каналами описывается
комбинацией выражений (3) и (4):

𝜎𝑦+ =
𝜎𝑇𝐹𝑀
𝑦

𝑘 ·𝑁 ·
√
𝑁𝑐𝑠

(5)

Подстановка значений дает величину девиации 𝜎𝑦(1) = 1, 8 · 10−15, что
достаточно для новой версии метанового ОСЧ. Достижимая девиация
Аллана при совместном использовании каскадированных и параллель-
ных каналов, в свою очередь, описывается комбинацией выражений (2)
и (3):

𝜎𝑦+ =
𝜎𝑇𝐹𝑀
𝑦

𝑁𝑝𝑎𝑟 ·𝑁 ·
√
𝑁𝑐𝑠

(6)

Подстановка значений дает близкую по величине девиации значение
𝜎𝑎(1) = 2, 0 · 10−15, что также достаточно для новой версии метаново-
го ОСЧ. Однако на практике алгоритм с каскадированными каналами
стабильней асинхронного алгоритма, основу которого составляет детек-
тирование совпадений фронтов. Итоговая структурная схема цифрового
ЧД, реализующего комбинированный алгоритм совместно с параллель-
ными вычислениями приведена на рисунке 3.
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Рисунок 3. Общая структурная схема параллельного счёта - версия 1 (1
- ЦЧД с к-каналами, 2 - фазовращатель на базе логических элементов

ПЛИС, 3 - ФАПЧ ПЛИС, 4 - объединитель К-каналов)

Применение частотного детектирования на высших четных гармони-
ках позволяют оценивать величину асимметрии спектральной линии, по-
явление которой свидетельствует о возможном снижении стабильности
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ОСЧ. При оценке величины асимметрии в расчет берутся только эффек-
ты, обладающие обратной симметрией по отношению к основному резо-
нансу. Резонанс складывается из несмещенного резонанса, описываемо-
го асимметричной функцией 𝐷(𝑥) амплитудой 𝐴𝐷 и суммы паразитных
факторов, описываемых симметричными функциями 𝐿(𝑥) =

∑︀
𝑖 𝑘𝑖𝐿𝑖(𝑥)

с интегральной амплитудой 𝐴𝐿. При модуляции наличие симметричных
добавок приведет к появлению четных гармоник относительно основной
частоты модуляции. Регистрация возникающих гармоник осуществля-
ется цифровым частотным детектированием с использованием интере-
сующей частоты в качестве опорной. Ожидаемый вклад симметричных
добавок и сигнал высших гармоник 𝑎′2, 𝑎

′
4 был проанализирован анали-

тически в соответствии с выражением:

𝐿(𝑡) ∼ 𝑎′2 cos(2𝜔𝐹𝑀 𝑡) + 𝑎′4 cos(4𝜔𝐹𝑀 𝑡) + . . . =

= 𝑎′2 sin(2𝜔𝐹𝑀 𝑡 +
𝜋

2
) + 𝑎′4 sin(4𝜔𝐹𝑀 𝑡 +

𝜋

2
) + . . .

где 𝑎′2 = −[
𝑎2
2

+
𝑎4
2

], 𝑎′4 =
𝑎4
8
.

При этом 𝑎2, 𝑎4 – коэффициенты разложения функции 𝐿(𝑥) в ряд Ма-
клорена.

Расчет показал, что величина сигнала гармоник меньше величины
погрешности рассматриваемого цифрового ЧД, и измерение асимметрии
не может быть осуществлено.

Вторая часть главы 2 посвящена исследованию длительной работы
метанового ОСЧ и созданию условий для обеспечения непрерывного ча-
стотного детектирования. Температурный уход в различных элементах
резонатора приводит к тому, что при эксплуатации более суток возника-
ют срывы, т.к. превышается диапазон регулирования длины резонатора.
Влияние температуры также ухудшает стабильность частоты для интер-
валов времени более 1 c. Поэтому для обеспечения длительной работы
частотного детектирования необходима термостабилизация моноблока.

Моноблок метанового ОСЧ излучает ∼ 5 Вт тепловой энергии в ре-
зультате работы гелий-неонового лазера. При расчете теплоотведения
также учитывалась необходимость перестраивать температуру как при
включении (для ускорения выхода ОСЧ на режим), так и в процессе
работы (для измерения влияний температуры на сигналы стандарта). В
результате были выбраны 3 элемента Пельтье, равномерно расположен-
ных вдоль нижней стороны моноблока.

Были проанализированы несколько подходов к построению схемы
теплоотведения (Рисунки 4, а и 4, б). Более равномерное температур-
ное распределение достижимо при одностороннем теплоотведении в со-
четании с кожухом. Термостабилизация в этом случае включает в себя
термостатирование и активное охлаждение, реализованные термоизоли-
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(а) Двухсторонний теплоотвод (б) Односторонний теплоотвод

Рисунок 4. Трехмерные модели схем отведения тепла
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Рисунок 5. Функциональная схема управления системой
термостабилизации

рующим кожухом с встроенными элементами Пельтье и прецизионной
системой измерения температуры. Большое внимание было уделено раз-
работке датчиков температуры с погрешностью менее ±0, 01°𝐶, а также
их правильному расположению для минимизации задержек распростра-
нения тепла от активного элемента до датчика. Оптимальным оказало
расположение датчика непосредственно под моноблоком, но не в центре
его поверхности, а непосредственно над одним из элементов Пельтье.

Для управления процессом термостабилизации была разработана си-
стема (Рисунок 5), обеспечивающая сбор данных с основного и вспомо-
гательного термодатчиков, формирование сигналов на драйверы элемен-
тов Пельтье, перестройку рабочей точку по температуре, индикацию и
передачу данных в цифровом виде для последующей обработки и анали-
за.

Третья глава посвящена практической реализации и эксперимен-
тальному исследованию предложенных алгоритмов и решений. Описана
разработка макета цифрового ЧД на базе ПЛИС, реализующего измере-
ние межмодовых биений метанового ОСЧ с различным числом п-каналов
на частоте модуляции и ее гармониках. Также подробно исследована
длительная работа моноблока метанового ОСЧ с системой термостаби-
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(а) 1-я гармоника (б) 2-я гармоника

Рисунок 6. Сигналы цифрового ЧД в составе метанового ОСЧ в
режиме сканирования

лизации. Для оценки качества цифрового ЧД применялась девиация Ал-
лана при 𝜏 = 1с, системы термостабилизации – 𝜏 = 10с.

Исследование работы макета цифрового ЧД проводилось в 3 этапа -
с генератором сигналов, с имитатором метанового ОСЧ и работа непо-
средственно в составе метанового ОСЧ. Для тестирования макета ЧД
была разработана интерфейсная плата, позволяющая подключать его к
внешним устройствам, в том числе к ОСЧ. При помощи стенда на осно-
ве генератора сигналов для одноканального цифрового ЧД на основной
частоте были показаны правильная работа фазовращения, линейность
АЧХ в диапазоне от 20 Гц до 10 кГц, а также полное количественное
совпадение амплитуды сигнала с предварительными расчетами.

Перед подключением к метановому ОСЧ макет ЧД был протестиро-
ван на специальном электронном имитаторе, который уступает стандарту
по величине погрешности частоты биений, но воспроизводит его функци-
онал в части подстройки частоты. На стенде с имитатором было показа-
но, что ЧД демонстрирует правильную форму сигналов как на основной
частоте модуляции, так и на гармониках. Был показан прямопропорцио-
нальный рост величины сигнала ЧД с ростом числа п-каналов. На этом
же стенде было показано, что увеличение ОСШ при увеличении времени
накопления сигнала происходит лучше чем ∼

√
𝑁 (закон для аналого-

вого ЧД), но хуже ожидаемого ∼ 𝑁 , что объясняется нереверсивным
типом счета, реализованном в макете ЧД.

В результате включения макета цифрового ЧД в состав действующе-
го метанового ОСЧ были успешно зафиксированы сигналы гармоник в
режиме сканирования (Рисунки 6, а и 6, б) и осуществлен захват мета-
нового резонанса, что подтверждает полную работоспособность макета.
Измерение девиации Аллана частоты биений в режиме захвата состави-
ло 25 Гц при интервале усреднения 0,1 с (Рисунок.7) и соответствующее
ему ОСШ системы 𝑆𝑁𝑅 = 66.

В общее ОСШ входит и ЧД, и выходные каскады интерфейсной пла-
ты, поэтому полученное значение было пересчитано на ОСШ цифрового
ЧД. На практике цифровой ЧД работает в паре в другими контура-
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Рисунок 7. Девиация Аллана метанового ОСЧ с одноканальным
цифровым ЧД
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Рисунок 8. Зависимость температуры моноблока от времени

ми регулирования, поэтому использовать цифровое усреднение в полосе
менее 100 Гц нельзя. Достижимая относительная девиация Аллана вы-
ходной частоты ОСЧ для макета цифрового ЧД составила 1, 4 · 10−13 на
интервале усреднения 0,01 с. Применение реверсивного счета, устраняю-
щего недостаточную корреляцию шума, при усреднении и объединении
п-каналов обеспечит 2, 8 · 10−14 и 1, 7 · 10−15 на интервале усреднения
0,01 с для одного и 16-ти каналов.

Вторая часть посвящена экспериментальному исследованию макета
системы термостабилизации метанового ОСЧ. Была показана стабиль-
ность поддержания температуры в точке между основанием и моно-
блоком на уровне ±0, 006°𝐶 в течение 1,5 часов, при том что время
установки постоянной температуры составило менее 7 мин, что подтвер-
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Рисунок 9. Зависимость частоты межмодовых биений от температуры
моноблока

ждает достижение необходимых стабильности и скорости перестройки
температуры (Рисунок 8). Измерения с температурными воздействиями
подтвердили прямую связь между температурой моноблока и частотой
межмодовых биений (Рисунок 9), количественно оцениваемую с помо-
щью температурного коэффициента частоты, величина которого соста-
вила 16, 150Гц

°C . Сдвиг локального максимума функции девиации Аллана
с 1 с до 10 с подтверждает достигнутое увеличение долговременной ста-
бильности частоты. Также время непрерывной работы метанового ОСЧ
в режиме захвата было увеличено до недель, что позволило выявить
сдвиг выходной частоты ОСЧ на 1,5 кГц за 14 дней, имеющий нетемпе-
ратурную природу. Обнаружение указанного эффекта стало возможным
благодаря использованию разработанной системы термостабилизации.

3. ОСНОВНЫЕ НАУЧНЫЕ И ПРАКТИЧЕСКИЕ РЕЗУЛЬТАТЫ

Проведенные теоретические и экспериментальные исследования
аппаратно-алгоритмического обеспечения для частотного детектора в оп-
тических стандартах частоты позволяют сделать следующие выводы:

– частотное детектирование с использованием априорной информации
о форме модуляции в метановом ОСЧ позволяет достичь относитель-
ной погрешности частоты ОСЧ 1·10−15 при интервале усреднения 1 с;

– для достижения теоретического ОСШ цифровое частотное детекти-
рование должно быть организовано на основе реверсивного счета,
что позволяет в полной мере использовать потенциал цифрового на-
копления сигнала и параллельных каналов счета;
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– разработанная система температурной стабилизации моноблока
опорного HeNe/CH4 лазера cо стабильностью поддерживаемой тем-
пературы на уровне ±0, 006°C обеспечила увеличение времени непре-
рывной работы частотного детектирования с дней до недель и позво-
лила сдвинуть точку локального минимума функции девиации Ал-
лана с 2 c до 10 с, повысив тем самым долговременную стабильность
метанового ОСЧ;

– система термостабилизации позволила измерить температурный ко-
эффициент частоты ОСЧ, а также обнаружить эффект дрейфа ча-
стоты, имеющий нетемпературное происхождение.
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