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Общая характеристика работы

Актуальность темы темы диссертационной работы определяется

необходимостью разработки новых методов решения задач терминально-

го управления для нелинейных динамических систем с учетом ограни-

чений. Подходы к решению таких задач известны лишь для отдельных

классов систем. Например, для аффинных систем, преобразуемых в за-

данной области к специальному виду, называемому регулярным канони-

ческим видом, программную траекторию, удовлетворяющую граничным

условиям, задают в виде полиномов от времени, порядок которых опре-

деляется количеством граничных условий.

Более общим классом нелинейных систем с управлением, включаю-

щим в себя аффинные системы, преобразуемые к каноническому виду,

являются плоские системы. Каждое решение плоской системы однознач-

но определяется некоторым набором функций, который называют плос-

ким выходом системы. Для этого класса систем применим подход, осно-

ванный на полиномиальной зависимости плоского выхода от времени.

Для неплоских систем общие подходы к решению терминальных задач

неизвестны. Однако выделен класс лиувиллевых систем, для которых в

частных случаях разрабатывались методы решения задач управления.

Формулировка задачи терминального управления может содержать

ограничения на состояние и управление системы. Указанные подходы не

учитывают ограничения системы. Для учета таких ограничений ранее

использовался, например, метод предварительного выбора пути, который

обобщается в представленной диссертации.

Другим новым методом, используемым для решения задач терминаль-

ного управления, применимым как к плоским, так и к неплоским систе-

мам, является метод, основанный на понятии накрытия. Он заключается

в дополнении системы уравнениями на производные управления и в по-

строении специального сюръективного отображения (накрытия) из рас-

ширенного фазового пространства дополненной системы в расширенное

фазовое пространство новой системы. При этом любое решение новой

системы должно удовлетворять всем начальным условиям терминальной

задачи. Программное движение в этом случае может быть найдено как

решение двух специально поставленных задач Коши для новой и допол-

ненной систем.
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Целью работы является решение терминальных задач для плоских

и лиувиллевых систем при наличии ограничений.

Для достижения поставленной цели потребовалось решение следую-

щих основных задач:

1. Нахождение программного управления при известной зеркальной

симметрии задачи терминального управления.

2. Разработка метода накрытий для решения задач терминального

управления плоскими и лиувиллевыми системами.

3. Получение условий декомпозируемости систем для решения терми-

нальных задач с учетом ограничений.

Методы исследования. В диссертации используются методы ма-

тематической теории управления, дифференциальной геометрии, теории

устойчивости, численные методы.

Научная новизна. Разработаны и обоснованы новые методы реше-

ния задач терминального управления, применимые к широкому классу

управляемых систем и позволяющие учитывать ограничения на состоя-

ния и управления.

В диссертации получены следующие новые научные результаты, вы-

носимые на защиту:

1. Метод накрытий для решения задач терминального управления в

случае плоских систем.

2. Метод накрытий для решения задач терминального управления в

случае лиувиллевых систем.

3. Решение задачи синтеза программного движения квадракоптера

вдоль коридора подбором плоского выхода.

4. Метод решения задач терминального управления с учетом ограни-

чений, основанный на декомпозиции систем.

5. Решение задачи синтеза программного движения вертолета вдоль

горизонтальной прямой с применением зеркальной симметрии.

Достоверность и обоснованность научных результатов и ма-

тематических выводов подтверждается строгостью используемого мате-

матического аппарата. Сформулированные в работе допущения обосно-

ваны в рамках содержательной постановки задачи, а также в процессе

математического моделирования.

Теоретическая и практическая ценность полученных результа-

тов состоит в том, что реализуемые в работе методы позволяют решать
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задачи терминального управления при наличии ограничений на состоя-

ния и управление для широкого класса систем.

Основные научные результаты диссертации отражены в 9 на-

учных работах, в том числе 5 статьях в журналах и изданиях, которые

включены в Перечень российских рецензируемых научных журналов и

изданий для опубликования основных научных результатов диссертации,

и материалах российской и международной конференций.

Личный вклад соискателя. Все исследования, результаты которых

изложены в диссертационной работе, проведены соискателем лично в про-

цессе научной деятельности. Из совместных публикаций в диссертацию

включен лишь тот материал, который непосредственно принадлежит со-

искателю, заимствованный материал обозначен в работе ссылками.

Апробация результатов работы. Результаты диссертационной

работы были доложены на научных семинарах кафедры «Математиче-

ское моделирование» МГТУ им. Н.Э. Баумана (Москва, 2014, 2016); Все-

российской научной конференции «XII Всероссийское совещание по про-

блемам управления ВСПУ-2014» (Москва, 2014); Международной науч-

ной конференции «1st Conference on Modelling, Identification and Control

of Nonlinear Systems (MICNON-2015)» (Saint-Petersburg, 2015).

Структура и объем работы. Диссертация состоит из введения,

трех глав и списка литературы. Работа изложена на 149 страницах,

содержит 49 рисунков. Библиография включает 101 наименование.

Содержание работы

Во введении обоснована актуальность темы, сформулированы цель

и задачи исследования, научная новизна, теоретическая и практическая

значимость полученных результатов, их достоверность, основные поло-

жения, выносимые на защиту, а также приведены данные о структуре и

объеме диссертационной работы.

В первой главе приведены известные теоретические результаты о

решении задач терминального управления плоскими системами, о деком-

позиции систем с управлением по статической обратной связи, изложены

основные сведения из бесконечномерной геометрии систем с управлением,

а также метод предварительного выбора пути.

Во второй главе изложены основные теоретические результаты, по-

лученные в работе и выносимые на защиту.
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Пусть задана система с одномерным управлением вида

ẋ = f(t, x, u), x = (x1, . . . , xn) ∈ Rn, u ∈ R. (1)

Рассмотрим пространство Rn+2 с координатами t, x1, . . . , xn, u. Обозна-

чим через U область этого пространства, где определена система (1).

Рассмотрим модуль 1–форм Картана в области U :

C1Λ(U) = span
C∞(U)

{dxi − fi(t, x, u) dt | i = 1, . . . , n}.

Элементы этого модуля есть в точности те 1–формы на U , которые равны

нулю на графиках всех решений системы (1).

Предположим для системы (1) поставлена какая–либо задача терми-

нального управления на отрезке [t0, tf ]. Обозначим через M0 множество

точек области U , удовлетворяющих начальным условиям, а через Mf —

множество точек области U , удовлетворяющих конечным условиям.

Пусть tc ∈ [t0, tf ]. Обозначим через U1 и U2 множество точек области

U , координата t которых удовлетворяет условию t ∈ [t0, tc] и t ∈ [tc, tf ]

соответственно. Диффеоморфизм F из некоторой области пространства

Rn+2, содержащей U1, в U называют зеркальной симметрией задачи тер-

минального управления, если

1) F ∗
(
C1Λ(U)

)
⊆ C1Λ(U);

2) F (M0) ⊆Mf ;

3) F ∗(t) = 2tc − t.

Из условий 2 и 3 этого определения следует, что 2tc = t0+tf и F (U1) =

U2.

Обозначим через Mc множество таких точек P области U , что точки

P и F (P ) имеют одинаковые координаты t, x1, . . . , xn и могут отличаться

только значениями координаты u. Из условия 3 следует, что Mc лежит в

слое {t = tc} области U .

Теорема 1. Пусть поставленная для системы (1) задача терминаль-

ного управления имеет зеркальную симметрию F , а
(
x∗(t), u∗(t)

)
— та-

кое решение системы (1) на отрезке [t0, tc], что
(
t0, x∗(t0), u∗(t0)

)
∈ M0,(

tc, x∗(tc), u∗(tc)
)
∈Mc. Тогда

u(t) =

{
u∗(t), t ∈ [t0, tc]

F ∗(u)
(
2tc − t, x∗(2tc − t), u∗(2tc − t)

)
, t ∈ (tc, tf ]
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есть решение поставленной задачи терминального управления, т.е. под-

ставляя эту функцию в систему (1) и решая для такой системы задачу

Коши с заданными начальными условиями, получаем решение, удовле-

творяющее конечным условиям.

Таким образом, наличие зеркальной симметрии позволяет понизить

количество граничных условий.

Пусть E и Y — две определенные системы обыкновенных дифферен-

циальных уравнений. Накрытием из системы E в систему Y называ-

ют сюръективное отображение расширенного фазового пространства си-

стемы E в расширенное фазовое пространство системы Y , при котором

любая траектория системы E отображается в траекторию системы Y ,

а прообраз любой траектории системы Y состоит из точек траекторий
некоторой подсистемы системы E . При этом говорят, что система E на-
крывает систему Y , слоем накрытия называют прообраз любой точки

расширенного фазового пространства системы Y , систему Y называют
базовой, ее зависимые переменные — базовыми переменными, а осталь-

ные зависимые переменные системы E — переменными слоя.

Рассмотрим метод накрытий для решения задачи терминального

управления для системы

ẋ = f(t, x, u), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, (2)

с граничными условиями

x(t0) = x0, x(tf) = xf . (3)

Предположим, что мы нашли функции Ui, ϕj, i = 1,m, j = 1, n, пере-

менных

t, x1, . . . , xn, u1, u̇1, . . . , u
(k1−1)
1 , u2, . . . , u

(km−1)
m , k1 + . . .+ km = n,

удовлетворяющие следующим условиям:

(A) Соотношения pj = ϕj, j = 1, n, определяют накрытие из системы

ẋj = fj(t, x1, . . . , xn, u1, . . . , um), j = 1, n, (4)

u
(ki)
i = Ui(t, x1, . . . , xn, u1, u̇1, . . . , u

(k1−1)
1 , u2, . . . , u

(km−1)
m ),

i = 1,m,
(5)
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в систему вида

ṗ = P (t, p), p ∈ Rn. (6)

(B) Заданные конечные значения x(tf) однозначно определяют значения

pf = p(tf) и наоборот, значения p(tf) однозначно определяют значения

x(tf).

(C) Если p0 — значение в точке t0 решения p(t) системы (6), удовлетво-

ряющего условию p(tf) = pf , то система нелинейных уравнений

p0 = ϕ(t0, x1,0, . . . , xn,0, u1(t0), . . . , u
(k1−1)
1 (t0), u2(t0), . . . , u

(km−1)
m (t0)) (7)

имеет решение относительно u1(t0), . . . , u
(k1−1)
1 (t0), u2(t0), . . . , u

(km−1)
m (t0).

В случае выполнения условий (A), (B), (C) задача (2), (3) может быть

решена следующим образом.

1. Из конечных условий (3) вычисляем значения p(tf).

2. Находим решение p(t) системы (6), удовлетворяющее условию

p(tf) = pf (решение задачи Коши в сторону уменьшения времени: от

tf до t0).

3. Вычисляем p(t0).

4. Из системы (7) находим значения u1(t0), u̇1(t0), . . . , u
(k1−1)
1 (t0),

u2(t0), . . . , u
(km−1)
m (t0).

5. Решая задачу Коши для системы (4)–(5) с начальными значениями

t0, x1,0, . . . , xn,0, u1(t0), u̇1(t0), . . . , u
(k1−1)
1 (t0), u2(t0), . . . , u

(km−1)
m (t0),

находим решение
(
x(t), u(t)

)
системы (2).

Найденное таким образом решение есть решение задачи (2), (3), так

как функция x(t) удовлетворяет начальным условиям (3) по построению,

в конечным условиям (3) — из условия (B).

Изложенный алгоритм решения задачи терминального управления

основан на построении таких функций U1, . . . , Um, для которых соответ-

ствующая система (4)–(5) накрывает систему вида (6). Условие (B) уста-

навливает связь этого накрытия с конечными условиями поставленной

задачи терминального управления, а условие (C) — с начальными усло-

виями этой задачи.

Систему вида (4)–(5), удовлетворяющую условиям (A), (B) и (C) для

некоторых функций ϕj, j = 1, n, будем называть r–замыканием задачи
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терминального управления (2), (3). r–Замыкание позволяет решать за-

дачу.

В случае, когда есть ограничения на x, u и производные u, необходи-

мо подбирать r–замыкание так, чтобы соответствующее решение задачи

терминального управления удовлетворяло этим ограничениям.

В разделе 2.3 изложены способы построения r–замыкания для плоских

систем. Известно, что при m = 1 любая плоская система приводится к

каноническому виду:

y(n) = v, (8)

а граничные условия преобразуются в условия ỹ(t0) = ỹ0, ỹ(tf) = ỹf ,

ỹ = (y, ẏ, . . . , y(n−1)). Из свойства инвариантности r–замыкания следует,

что достаточно построить r–замыкание для этой задачи терминального

управления.

Пусть y = χ(t, z1, . . . , z2n) — такая функция независимых переменных

t, z1, . . . , z2n, что матрица

(aij) =

(
∂iχ

∂ti−1∂zj

)
, i = 1, 2n, j = 1, 2n (9)

невырождена в точке (tf , z̄0), z̄0 = (z1,0, . . . , z2n,0). Построим такое диф-

ференциальное уравнение порядка 2n, чтобы функция y = χ(t, z1, . . . , z2n)

была его общим решением. По теореме о неявной функции в некото-

рой окрестности точки (tf , z̄0) переменные z1, . . . , z2n представляют собой

функции от t, y, y(1), . . ., y(2n−1):

zi = Zi(t, y, y
(1), . . . , y(2n−1)), i = 1, 2n. (10)

Рассмотрим дифференциальное уравнение порядка 2n:

y(2n) =
∂2nχ

∂t2n

(
t, Z1(t, y, . . . , y

(2n−1)), . . . , Z2n(t, y, . . . , y
(2n−1))

)
, (11)

определенное в окрестности точки(
tf , yf = χ(tf , z̄0), y

(1)
f =

∂χ

∂t
(tf , z̄0), . . . , y

(2n−1)
f =

∂2n−1χ

∂t2n−1
(tf , z̄0)

)
. (12)

По построению, для любого набора значений z1, . . . , z2n из окрестности

точки z̄0 функции y = χ(t, z1, . . . , z2n) есть решение уравнения (11), а
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функция (10) — первые интегралы этого уравнения. Поэтому функции

p1 = χ
(
tf , Z1(t, y, . . . , y

(2n−1)), . . . , Z2n(t, y, . . . , y
(2n−1))

)
,

p2 =
∂χ

∂t

(
tf , Z1(t, y, . . . , y

(2n−1)), . . . , Z2n(t, y, . . . , y
(2n−1))

)
, (13)

. . .

pn =
∂n−1χ

∂tn−1

(
tf , Z1(t, y, . . . , y

(2n−1)), . . . , Z2n(t, y, . . . , y
(2n−1))

)
,

как функции первых интегралов (здесь tf — константа), также есть пер-

вые интегралы уравнения (11). Следовательно, их производные в силу

этого уравнения равны нулю:

ṗi = 0, i = 1, n. (14)

Функции (10) как первые интегралы уравнения (11) не зависят от t

на его решениях. Поэтому

y(i−1)(tf) =
∂i−1χ

∂ti−1
(tf , z1, . . . , z2n) = pi(tf), i = 1, n. (15)

Теорема 2. Пусть y = χ(t, z1, . . . , z2n) — такая функция, что матрица

(9) невырождена в точке (tf , z̄0), z̄0 = (z1,0, . . . , z2n,0). Тогда существует

такое δ > 0, что при t0 ∈ (tf−δ, tf) существует такая окрестность V ⊂ Rn

точки (
χ(t0, z̄0),

∂χ

∂t
(t0, z̄0), . . . ,

∂n−1χ

∂tn−1
(t0, z̄0)

)
,

что для любой точки (y0, y
(1)
0 , . . . , y

(n−1)
0 ) из V уравнение (11) есть r–

замыкание задачи терминального управления для уравнения (8) с гра-

ничными условиями

y(t0) = y0, y(1)(t0) = y
(1)
0 , . . . , y(n−1)(t0) = y

(n−1)
0 ,

y(tf) = yf , y(1)(tf) = y
(1)
f , . . . , y(n−1)(tf) = y

(n−1)
f ,

где числа yf , y
(1)
f , . . . , y

(n−1)
f определяются соотношениями (12).

В случае m > 1 формулы (9)–(15) можно обобщить. Кроме того,

в диссертации метод накрытий обощается на случай так называемых

лиувиллевых систем. Динамические системы с управлением, орбитально

эквивалентные системам вида

x
(ki)
i = fi(t, y, . . . , y

(s)), i = 1, n, y = (y1, . . . , ym) ∈ Rm, (16)
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называют лиувиллевыми. Множество решений лиувиллевой системы лег-

ко описать: множество решений системы (16) состоит из таких набо-

ров функций (x1(t), . . . , xn(t), y1(t), . . . , ym(t)), что функции y1(t), . . . , ym(t)

произвольны, а функции x1(t), . . . , xn(t) находятся интегрированием пра-

вых частей системы (16). Переменные y1, . . . , ym называют лиувиллевы-

ми, их набор y — лиувиллевым выходом, а переменные x1, . . . , xn — ин-

тегральными.

Рассмотривается случай, когда ki = 1 для всех i = 1, n и m =

= 1. Предположим, что для системы (16) такого вида поставлена задача

терминального управления c граничными условиями

x|t=t0 = x0, ỹ|t=t0 = ỹ0, x = (x1, . . . , xn),

x|t=tf = xf , ỹ|t=tf = ỹf , ỹ = (y(0), . . . , y(L−1)). (17)

Для уравнения y(L) = v с конечными условиями ỹ|t=tf = ỹf построим

r-замыкание вида

y(k) = U(t, y), k = n+ 2L, y = (y(0), . . . , y(k−1)) (18)

с накрытием, заданным функциями pj = pj(t, y), j = 1, L.

В расширенном фазовом пространстве системы (18) рассмотрим век-

торное поле

D =
∂

∂t
+

k−2∑
l=0

y(l+1) ∂

∂y(l)
+ U(t, y)

∂

∂y
(k−1)
j

,

и функции Fi(t, y), i = 1, n, определенные условиями

D(Fi) = fi, Fi|t=tf = 0.

Теорема 3. Уравнение (18) удовлетворяет условиям (A) и (B) опре-

деления r–замыкания граничной задачи для системы

ẋi = fi(t, y, . . . , y
(s)), i = 1, n,

с граничными условиями (17), а функции pj, qi = xi−Fi, j = 1, L, i = 1, n,

определяют соответствующее накрытие.

Таким образом можно построить r–замыкание для лиувиллевых си-

стем.
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Рассмотрим теперь понятия декомпозиции системы с управлением и

связанное с ним понятие декомпозиции терминальной задачи.

Декомпозицией системы с управлением называют преобразование си-

стемы в систему вида

ż = g1(t, z, v), z ∈ Rn1, v ∈ Rm1, (19)

ζ̇ = g2(t, ζ, z, v, v̇, . . . , v
(l), ξ), ζ ∈ Rn2, ξ ∈ Rm2, (20)

с состоянием (z, ζ) и управлением (v, ξ).

Декомпозицию различают по типу используемого преобразования.

Мы используем преобразование орбитальной эквивалентности и называ-

ем соответствующую декомпозицию орбитальной декомпозицией.

Построение теории преобразований общего вида, в частности, теории

орбитальной декомпозиции, невозможно в рамках конечномерной диффе-

ренциальной геометрии. Необходимо рассматривать пространства беско-

нечных джетов и бесконечные продолжения систем. Для формулировки

результатов работы нам потребуются некоторые сведения из бесконечно-

мерной геометрии систем с управлением.

Отметим, что решением системы (2) является векторная функция

s(t) = (x(t), u(t)).

Две векторные функции s1, s2 касаются в точке t0 ∈M с порядком k,

если они имеют в точке t0 одинаковые частные производные до порядка

k включительно.

Касание порядка k в точке t0 есть отношение эквивалентности, кото-

рое обозначается s1
k,t0∼ s2. Множество классов эквивалентных векторных

функций обозначают Jkt0. Класс эквивалентности векторной функции s

будем обозначать [s]kt0 и называть k-джетом векторной функции s в точ-

ке t0 . Таким образом, если s1
k,t0∼ s2, то [s1]

k
t0

= [s2]
k
t0

.

Пространством (или многообразием) k-джетов называют объедине-

ние Jkt0 по всем точкам t0 ∈M :

Jkπ =
⋃
t0∈M

Jkt0.

Для любой векторной функции s определим кривую jk(s)(t) = [s]kt , t ∈
R в Jkπ и назовем ее k–джетом векторной функции s.
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Уравнением будем называть любое подмножество E ⊂ Jkπ. Множе-

ство E (1) ⊂ Jk+1π, состоящее из таких точек [s]k+1
t , что k–джет векторной

функции s касается уравнения E в точке [s]kt , называют первым продол-

жением уравнения E . Продолжение E (l) порядка l уравнения E опреде-
ляется индуктивно, как первое продолжение продолжения E (l−1) порядка
l − 1: E (l) =

(
E (l−1)

)(1)
. Многообразие E (l) лежит в Jk+lπ и задается все-

ми дифференциальными следствиями уравнения E вплоть до порядка l
включительно.

Пространство бесконечных джетов J∞π определяется как обратный

предел цепочки проекций

J0π
π1,0←− J1π ← . . .← Jkπ

πk+1,k←− Jk+1π ← . . . ,

где πk+1,k — это проекция

πk+1,k: J
k+1π → Jkπ, πk+1,k([s]

k+1
t ) = [s]kt .

А именно, элементом J∞π является последовательность таких точек θk ∈
Jkπ, k ≥ 0, что

θ0
π1,0←− θ1 ← . . .← θk

πk+1,k←− θk+1 ← . . . .

Определим бесконечное продолжение E∞ (или диффеотоп) уравнения

E ⊂ Jkπ как подмножество J∞π, состоящее из таких точек θ = {θl} ∈
J∞π, что для любого натурального l точка θk+l принадлежит E (l). График
в E∞ любого решения s уравнения E касается векторного поля

DE =
∂

∂t
+

n∑
i=1

fi(t, x, u)
∂

∂xi
+

m∑
l=1

∞∑
j=0

u
(j+1)
l

∂

∂u
(j)
l

,

которое называют полной производной по переменной t.

Набор векторных полейX1, . . . , Xq на диффеотопе E∞ системы E будем
называть f–набором системы E , если

1) векторные поля X1, . . . , Xq порождают инволютивное распределе-

ние на E∞;

2) векторные поляX1, . . . , Xq иDE линейно независимы в каждой точке

и порождают инволютивное распределение на E∞;

3) существует такое кольцо K функций на E∞, что F0(E) ⊂ K ⊂ Fl(E)

для некоторого целого l ≥ 0 и Xi(K) ⊂ K для любого i = 1, . . . , q.
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Регулярной точкой f–набора назовем точку общего положения θ ∈ E∞

соответствующего кольца K, в окрестности которой существуют такие

функции ζ1, . . . , ζq ∈ K, что матрица
(
Xi(ζj)(θ)

)
невырождена.

В диссертации доказана следующая теорема.

Теорема 4.

(a) Набор векторных полей ∂/∂ζ1, . . . , ∂/∂ζq является f -набором систе-

мы

a(t, z, ż, . . . , z(l)) = 0, a ∈ Rn1, z ∈ Rn1+m1, (21)

ζ̇ = b(t, ζ, z, . . . , z(l), ξ, . . . , ξ(l)), ζ ∈ Rq, ξ ∈ Rm2. (22)

(b) Любой f–набор системы E в окрестности регулярной точки определя-
ет для системы E орбитальную декомпозицию вида (21)–(22).

(c) Для любой орбитальной декомпозиции вида (21)–(22) системы E су-
ществует f–набор системы E , определяющий эту декомпозицию.

Алгоритм построения декомпозиции по f–набору.

Пусть (X1, . . . , Xq) — f–набор системы E , θ ∈ E∞ — его регулярная точ-

ка.

1. Определяем кольцо K и его образующие.
2. В качестве новой независимой переменной τ системы E выбираем та-
кой общий первый интеграл векторных полей X1, . . . , Xq, что τ ∈ K и

Dt(τ)(θ) 6= 0.

3. Дополняем функцию τ функциями g1, . . . , gp ∈ K до максимально-

го функционально независимого набора общих первых интегралов полей

X1, . . . , Xq.

4. Выбираем такие функции ζ1, . . . , ζq ∈ K, что матрица
(
Xi(ζj)(θ)

)
не-

вырождена (см. определение f–набора). Тогда в окрестности θ любой

элемент из K есть функция от τ, g1, . . . , gp, ζ1, . . . , ζq.
5. Находим дифференциальные соотношения на g1, . . . , gp, ζ1, . . . , ζq и по-

лучаем систему вида

a(τ, g,Dτ(g), . . . , Dl
τ(g)) = 0, (23)

Dτ(ζ) = b(τ, ζ, g, . . . , Dl1
τ (g)). (24)

6. Среди функций g1, . . . , gp находим те, которые вместе со своими про-

изводными не содержатся ни в одном уравнении вида (23). Обозначаем
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их через ξ1, . . . , ξm2
. Остальные функций набора g1, . . . , gp обозначаем че-

рез z1, . . . , zn1+m1
. Тогда уравнения (23) принимают вид (21), а уравне-

ния (24) — вид (22).

Если f–набор X системы E определяет декомпозицию (21)–(22), то

систему (21) называют факторизацией системы E вдоль X. Образующие

какой-либо алгебры Ли классических симметрий системы образует ее f–

набор.

Рассмотрим теперь произвольную систему вида (2), которая имеет

декомпозицию (19)–(20). Предположим, что задача терминального упра-

вления на решения системы (2) с граничными условиями (3) сводится к

двум граничным задачам: на решения
(
z(t), v(t)

)
системы (19) и на ре-

шения
(
ζ(t), ξ(t)

)
системы (20). Такое разделение задачи терминального

управления на две граничные задачи называется декомпозицией задачи

терминального управления.

Отметим, что декомпозицию задачи терминального управления сле-

дует строить так, чтобы возникающие граничные задачи имели решения.

В третьей главе приведены примеры решения задач терминального

управления изложенными в диссертации методами. В разделе 3.1 для за-

дачи терминального управления динамической системой, описывающей

движение вертолета вдоль горизонтальной прямой, использованы зер-

кальные симметрии, чтобы снизить количество граничных условий для

задачи, и метод накрытий, чтобы построить управление такой системой.

Кроме того, с помощью декомпозиции задачи терминального управления

показано, как построить программное управление движением вертолета

в вертикальной плоскости.

В разделе 3.2 показано, как подбором плоского выхода можно решить

задачу терминального управления для плоской динамической системы,

описывающей движение квадрокоптера в коридоре. А именно, плоский

выход выбирается так, чтобы все его значения были допустимыми. Та-

кая замена позволяет учесть ограничения на область значений плоского

выхода.

В разделе 3.3 показано, как для системы, описывающей движение ав-

томобиля при отсутствии проскальзывания, на основе декомпозиции за-

дачи терминального управления удается решить задачу терминального

управления при сложной области допустимых значений переменных.
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В разделе 3.4 на примере системы, описывающей движение маятника

Капицы, показано, как можно использовать метод накрытий для лиувил-

левых систем.

Основные выводы и результаты работы

В диссертации рассмотрены различные дифференциально-

геометрические подходы к решению задач терминального управления

плоскими и лиувиллевыми системами при наличии ограничений.

На примере решения задачи управления движением вертолета вдоль

горизонтальной прямой показано, как использование зеркальной симме-

трии задачи позволяет снизить количество граничных условий.

Сформулированный в работе метод накрытий применен к плоским и

к лиувиллевым системам. Хотя доказаны только локальные факты, т.е.

когда начальный момент близок к конечному, а начальные условия близ-

ки к конечным условиям, но представленная конструкция r-замыкания и

накрытия может быть применима и в нелокальной ситуации.

Показано, что для плоской системы в качестве r-замыкания можно

выбрать произвольную определенную систему обыкновенных дифферен-

циальных уравнений, порядок которой равен количеству условий терми-

нальной задачи. На примере управления автомобилем показано, как этот

факт может быть использован для учета ограничений. А именно, в ка-

честве r-замыкания была выбрана система, обладающая инвариантным

множеством, все точки которого удовлетворяют ограничениям задачи.

Найденная траектория лежит в этом инвариатном множестве и поэтому

удовлетворяет всем ограничениям задачи.

На примере терминального управления движением квадрокоптера в

коридоре показано, как замена плоского выхода позволяет учесть ограни-

чения на его значения.

Использование декомпозиции системы позволяет разбить поставлен-

ную задачу терминального управления на две более простые граничные

задачи, что продемонстрировано на примере задачи объезда автомобилем

трех столбиков.

Итак, основные выводы диссертации могут быть сформулирова-

ны следующим образом:
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1. Зеркальные симметрии могут быть применены при решении задач

терминального управления нелинейными динамическими системами для

уменьшения количества граничных условий.

2. Метод накрытий может быть применен для решения задач терми-

нального управления плоскими и лиувиллевыми системам.

3. Для плоской системы в качестве r-замыкания может быть выбра-

на произвольная определенная система обыкновенных дифференциальных

уравнений, порядок которой равен количеству условий терминальной за-

дачи. Это позволяет для учета ограничений задачи использовать инва-

риантные множества r-замыкания.

4. Использование декомпозиции системы позволяет разбить поста-

вленную для нее задачу терминального управления на две более простые

граничные задачи.

5. При решении задач терминального управления плоской системой

замена плоского выхода позволяет учесть ограничения на его значения.
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