




Общая характеристика работы

Актуальность темы. Среди задач управления движением различ-

ных механических объектов можно выделить класс, когда за заданное

или конечное время требуется перевести объект из заданного начального

состояния в заданное конечное состояние. Такие задачи называют тер-

минальными. При этом, в большинстве случаев, решение данных задач

осложняется наличием ограничений на состояния и управления. К по-

добным задачам относятся и рассматриваемые в данной работе задача

переориентации космического аппарата (КА), а также задача движения

летательного аппарата (ЛА) через заданные граничные состояния. К со-

жалению, большинство разработанных к настоящему моменту методов

решения терминальных задач не дают возможности учета ограничений,

наложенных на состояние системы. Применение принципа максимума

Понтрягина к решению терминальных задач при наличии ограничений

на управления ведет к получению управления, не являющегося непре-

рывным. Одним из возможных подходов к учету ограничений на со-

стояния в терминальных задачах является метод локальных вариаций

(Н.Н. Моисеев, Ф.Л. Черноусько, И.А. Крылов) применение которого, од-

нако, может приводить к ограничениям на реализуемость траектории. В

настоящее время широкое распространение получили методы, основан-

ные на преобразовании аффинных систем к регулярному каноническому

виду при помощи замен переменных состояния, управления и независи-

мой переменной (B. Jakubczyk, W. Respondek, А.П. Крищенко, С.Б. Тка-

чев, M. Sampei, K. Furuta, M. Guay, B. Fang, G. Kalker, А.В. Пестерев,

Л.Б. Рапопорт и др.). Поэтому актуальной является разработка методов

решения терминальных задач при наличии ограничений для обратимых

систем и, в частности, для систем канонического вида.

Цель проведенных исследований — разработка и программная

реализация методов аналитического и численного решения терминаль-

ных задач для обратимых систем в множестве непрерывных управлений

при наличии ограничений на переменные состояния и управления, при-

менение разработанных методов для решения задач переориентации КА,

планировании движения ЛА и сравнение различных решений этих задач.
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Основными вопросами, рассматриваемыми в диссертации, являются

методы построения параметрических множеств траекторий, удовлетво-

ряющих граничным условиям, нахождение в этих множествах решения

поставленной задачи, сравнение различных решений.

Методы исследования. В работе применяются методы математи-

ческой теории управления, методы конечномерной оптимизации, концеп-

ция обратных задач динамики, метод Бубнова — Галеркина, различные

численные методы и методы математического моделирования.

Научная новизна. В диссертации получены следующие новые ре-

зультаты, которые выносятся на защиту:

1. Методы построения параметрических семейств траекторий для тер-

минальных задач, реализуемых в классе непрерывных управлений,

для систем с обратимым отображением «вход-выход».

2. Численный метод решения терминальных задач для класса обрати-

мых систем при наличии ограничений.

3. Численное решение задач переориентации КА, планирования дви-

жения ЛА и сравнение различных решений этих задач.

Достоверность результатов. Достоверность полученных резуль-

татов обеспечивается строгостью применяемого математического аппа-

рата и подтверждается результатами математического моделирования.

Практическая значимость. Результаты диссертационной работы

могут использоваться для разработки алгоритмов терминального упра-

вления для широкого класса механических систем, а также других дина-

мических систем, используемых как модели в различных областях есте-

ствознания.

Апробация результатов работы. Результаты диссертационной

работы докладывались на XIII-й международной конференции Process

Control (Братислава, Словакия 2001), I-й Московской конференции «Де-

композиционные методы в математическом моделировании» (Москва,

2001), VIII Всероссийском съезде по теоретической и прикладной механи-

ке (Екатеринбург, 2011), VII Международном семинаре «Устойчивость и

колебания нелинейных систем управления» (Москва, 2002), XII Между-

народной конференции «Устойчивость и колебания нелинейных систем
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управления» (Москва, 2012), Международной конференции по математи-

ческой теории управления и механике (Суздаль, 2015, 2017), XIII Меж-

дународной конференции «Устойчивость и колебания нелинейных систем

управления» (Москва, 2016), 20-ом конгрессе ИФАК (Тулуза, Франция,

2017).

Основные научные результаты диссертации отражены в 7 на-

учных работах общим объемом 3.47 п.л., в том числе в 6 статьях из Переч-

ня российских рецензируемых научных журналов и изданий, и 8 тезисах

докладов объемом 0.71 п.л.

Личный вклад соискателя. Все исследования, изложенные в дис-

сертационной работе, проведены лично соискателем в процессе научной

деятельности. Из совместных публикаций в диссертацию включен лишь

тот материал, который непосредственно принадлежит соискателю; заим-

ствованный материал обозначен в работе ссылками.

Структура и объем работы. Диссертационная работа состоит из

введения, трех глав, выводов и списка литературы. Работа изложена на

124 страницах, содержит 45 рисунков. Библиография включает 92 на-

именования.

Содержание работы

Во введении обоснована актуальность темы, сформулированы цель

и задачи исследования, научная новизна, теоретическая и практическая

значимость полученных результатов, их достоверность, основные поло-

жения, выносимые на защиту, а также приведены данные о структуре и

объеме диссертационной работы.

В первой главе приведены основные сведения из геометрической тео-

рии нелинейных динамических систем и математической теории управле-

ния, включая понятия динамической системы, аффинной системы, систе-

мы канонического вида, терминальной задачи. Описаны основные идеи

метода обратных задач динамики, широко используемого в данной рабо-

те. Введено понятие обратимой системы.

Определение. Система{
ẋ = F (x, u),

y = h(x),
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называется обратимой, если для любого наперед заданного выхода y(t)

системы найдется реализующий его вход u(t).

Приведены известные теоремы, содержащие условия существования

преобразования аффинных систем к каноническому виду.

Во второй главе рассматривается задача переориентации КА из

произвольного углового положения в требуемое конечное положение по-

коя за заданное время. В качестве математической модели КА выбрана

модель, описывающая КА как твердое тело. Представлен обзор литера-

туры по методам, используемым при решении данной задачи.

В разделе 2.1 вводится математическая модель, описывающая угловое

движение КА как угловое движение твердого тела

2Λ̇ = Λ ◦ ω, Iω̇ + ω × Iω = u, (1)

где кватернион Λ(t) = (λ0(t), λ1(t), λ2(t), λ3(t))
T удовлетворяет условию

нормировки

|Λ(t)|2 = λ2
0(t) + λ2

1(t) + λ2
2(t) + λ2

3(t) = 1 (2)

и задает положение связанной системы координат относительно непо-

движной системы координат, ω = (ω1, ω2, ω3)
T ∈ R3 — вектор угло-

вой скорости в проекциях на оси связанной системы координат, u =

= (u1, u2, u3)
T ∈ R3 — управление, I — матрица моментов инерции КА,

◦ — операция умножения кватернионов. Под управлением понимается

суммарный момент, действующий на корпус КА со стороны исполнитель-

ных органов. В работе предполагается, что компоненты вектора упра-

вления как функции времени непрерывны.

Рассматривается задача переориентации КА из заданного начального

положения

Λ(0) = Λ0, ω(0) = ω0 (3)

в заданное конечное положение покоя

Λ(t∗) = Λ∗, ω(t∗) = 0 (4)

за промежуток времени T = [0, t∗].

Приводится известное (Ермошина О.В., Крищенко А.П. Синтез про-

граммных управлений ориентацией космического аппарата методом
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обратных задач динамики // Изв. РАН. ТиСУ. 2000. № 2, С. 155-162.)

решение терминальной задачи (1)-(4)

u = u(t) = 2I(Λ−1(t) ◦ Λ̈(t)− Λ−1(t) ◦ Λ̇(t) ◦ Λ−1(t) ◦ Λ̇(t))+

+4Λ−1(t) ◦ Λ̇(t)× IΛ−1(t) ◦ Λ̇(t),
(5)

где

Λ(t) = (λ0(t), λ1(t), λ2(t), λ3(t))
T , λi(t) =

µi(t)√
3∑
i=0

µ2
i (t)

, i = 0, 3,
(6)

µi(t) =λi∗+ci1(t− t∗)3 +ci2(t− t∗)4 +ci3(t− t∗)5, i= 0,3. (7)

Коэффициенты cik, i = 0, 3, k = 1, 3, однозначно выражаются через гра-

ничные условия:

Λ(0) = Λ0, Λ(t∗) = Λ∗,

Λ̇(0) = 0.5Λ0 ◦ ω0, Λ̇(t∗) = 0,

Λ̈(0) = 0.5(Λ̇0 ◦ ω0 + Λ0 ◦ I−1(u0 − ω0 × Iω0)), Λ̈(t∗) = 0,

(8)

соответствующим условиям (3)–(4) и значениям управления u(0) = u0,

u(t∗) = 0, определяя тем самым единственную кинематическую траекто-

рию.

В разделах 2.2, 2.3 предложены различные параметрические расши-

рения набора функций (7) до множеств функций из C2, удовлетворяющих

граничным условиям (8), что позволяет расширить класс рассматрива-

емых движений и при выборе решения использовать оптимизационный

подход.

В разделе 2.2 рассматривается расширение набора функций (7) до

параметрического множества полиномиальных вектор-функций. Данное

множество получается прибавлением к функциям µi(t), i = 0, 3, задан-

ным в виде (7), полиномов

µkii (t) = t3(t− t∗)3(ci4 + ci5t+ . . .+ cikit
ki−4), i = 0, 3, (9)

которые равны нулю при t = 0 и t = t∗ вместе со своими первыми двумя

производными. Построенная при помощи полиномов µ̃i(t) = µi(t) + µkii (t)
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функция Λ(µ̃i) также удовлетворяет граничным условиям (8), что позво-

ляет использовать функции µ̃i(t) для задания кинематической траекто-

рии по соотношениям (6), а затем по формуле (5) найти реализующее ее

управление.

Для нахождение коэффициентов cij используется задача конечномер-

ной оптимизации

J(cij, i = 0, 3, j = 4, ki)→ min .

При наличии ограничений на управления (u ∈ U) или угловые скорости

(ω ∈ Ω) для нахождения коэффициентов cij используется задача конечно-

мерной оптимизации при наличии ограничений

J(cij, i = 0, 3, j = 4, ki) |u∈U,ω∈Ω → min .

В качестве критерия оптимизации в работе принят

J =

T∫
0

(
|u1(τ)|
l1

+
|u2(τ)|
l2

+
|u3(τ)|
l3

)
dτ, (10)

где l1, l2, l3 — нормирующие множители.

В разделе 2.3 расширение набора функций (7) до параметрического

множества реализуется при помощи добавлении к каждой функции µi(t),

i = 0, 3, слагаемого

µsi (t) = t(t− t∗)pi(t), i = 0, 3, (11)

где pi(t) — кубический сплайн дефекта 1, построенный на отрезке време-

ни [0, t∗] по сетке с n+1 узлом 0 = t0 < t1 < . . . < tm = t∗, который вместе

со своей первой производной p′i(t) равен нулю на концах интервала вре-

мени T . В результате функция Λ(µ̂i), где µ̂i = µi(t)+µsi (t), удовлетворяет

граничным условиям (8).

Вид кубического сплайна pi(t) зависит от параметров pij = pi(tj), j =

= 1, n− 1 — равных значению сплайна в узлах сетки. В результате

получено pij -параметрическое множество решений терминальной зада-

чи j = 1, n− 1, i = 0, 3. Для выбора значений pij используется задача

конечномерной оптимизации с критерием (10).
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В разделе 2.4 функции µi(t) из (6) ищутся в виде линейной комбинации

кубических B-сплайнов, построенных на отрезке времени [0, t∗] по сетке

с m+ 1 узлом 0 = t0 < t1 < . . . < tm = t∗:

µi(t) =
m+1∑
j=−1

bijB
(3)
j (t) i = 0, 3, m ≥ 3, (12)

где bij — подлежащие определению неизвестные коэффициенты, а

B
(3)
j (t) — кубический В-сплайн. Если в (12) m > 3, то получается bij -

параметрическое семейство решений. Для нахождение коэффициентов

bij j = 2,m− 2 используется задача конечномерной оптимизации с кри-

терием (10).

В разделе 2.5 строится стабилизирующее управление в виде нестаци-

онарной обратной связи из условия экспоненциального убывания ошибок

ei = λi − λi(t), i = 1, 3. Построенное стабилизирующее управление имеет

вид:

uст(λ1, λ2, λ3, ω, t) = IN−1
0 (Λ)(2F (Λ̄, ω, t)−M0(ω)M(ω)Λ) + ω × Iω, (13)

где F (Λ̄, ˙̄Λ, t) =

 λ̈1(t)− k11(λ̇1 − λ̇1(t))− k01(λ1 − λ1(t))

λ̈2(t)− k12(λ̇2 − λ̇2(t))− k02(λ2 − λ2(t))

λ̈3(t)− k13(λ̇3 − λ̇3(t))− k03(λ3 − λ3(t))

 , M(ω) =

=


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 , M0(ω) =

 ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 , N0(Λ) =

=

 λ0 −λ3 λ2

λ3 λ0 −λ1

−λ2 λ1 λ0

 , kij > 0, λ0 =
√

1− λ2
1 − λ2

2 − λ2
3, в области λ0 > 0

и λ0 = −
√

1− λ2
1 − λ2

2 − λ2
3, в области λ0 < 0.

В разделе 2.6 рассмотрены способы учета ограничений на управления

следующего вида

|ui| ≤ uimax, i = 1, 3. (14)

Основным используемым в работе подходом к учету ограничений (14)

является использование управления с насыщением, состоящее в заме-

не обратной связи u = uст = uст(λ1, λ2, λ3, ω, t) = (u1ст , u2ст , u3ст)T
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на обратную связь u = ũ = ũ(λ1, λ2, λ3, ω, t) = (ũ1, ũ2, ũ3)
T , где ũi =

= uiст , если |uiст | ≤ uimax, или ũi = sign(uiст)uimax, если |uiст | > uimax.

Наиболее часто данный подход использовался в несколько модифициро-

ванном виде, когда построение программной траектории осуществлялось

с использование задачи конечномерной оптимизации при наличии огра-

ничений (14).

В разделе 2.7 приведены результаты сравнения по критерию (10) ал-

горитмов управления при предложенных параметрических расширениях.

Проведено моделирование работы предлагаемого алгоритма при нали-

чии ограничений на управления, а так же в условиях неточной информа-

ции о матрице инерции КА. Приводятся рекомендации по использованию

предлагаемого в работе алгоритма. В пункте 2.7.5 на задаче управле-

ния пространственным разворотом КА проведено сравнение с решени-

ем (Левский М.В. Управление переориентацией космического аппарата с

минимальным интегралом энергии. //Автоматика и телемеханика. 2010.

№ 12. C. 25-42.), построенным на основе принципа максимума Понтряги-

на. Решения сравнивались с помощью интеграла от кинетической энер-

гии вращения КА. Моделирование показало, что различие в значениях

критерия оказалось в пределах 10− 15%.

В третьей главе рассматривается задача автоматической проклад-

ки траектории летательного аппарата при наличии ограничений на пере-

менные состояния и управления. Время маневра считается известным. В

качестве математической модели ЛА выбрана модель материальной точ-

ки, описываемая системой из шести дифференциальных уравнений. Учет

ограничений на переменные состояния осуществлялся как средствами чи-

сленной оптимизации, так и аналитическим методом.

В разделах 3.1, 3.2 приводится используемая математическая модель

движения ЛА и ее преобразование к каноническому виду. Математиче-

ская модель ЛА имеет вид
V̇ = (nx − sinϑ)g, Ḣ = V sinϑ,

ϑ̇ =
(ny cos γ − cosϑ)g

V , L̇ = V cosϑ cosψ,

ψ̇ = −nyg sin γ
V cosϑ

, Ż = −V cosϑ sinψ,

(15)

где V — путевая скорость; ϑ — угол наклона траектории; ψ — угол кур-

са; H — высота; L — продольная дальность; Z — боковая дальность;
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nx — продольная перегрузка; ny — поперечная перегрузка; γ — угол

крена; g — ускорение свободного падения. При этом высота H, продоль-

ная дальность L и боковая дальность Z представляют собой координаты

положения центра масс в нормальной земной неподвижной системе коор-

динат, а V , ϑ и ψ задают движение в траекторной системе координат.

В качестве управлений рассматривают перегрузки nx, ny и угол крена γ.

Система (15) может быть приведена к следующему каноническому виду

ẏ1 = y4,

ẏ4 = −g + v1g sinϑ+ v2g cosϑ,

ẏ2 = y5,

ẏ5 = v1g cosϑ cosψ − v2g sinϑ cosψ + v3g sinψ,

ẏ3 = y6,

ẏ6 = −v1g cosϑ sinψ + v2g sinϑ sinψ + v3g cosψ,

(16)

где y1 = H, y2 = L, y3 = Z, y4 = ẏ1 = V sinϑ, y5 = ẏ2 = V cosϑ cosψ,

y6 = ẏ3 = −V cosϑ sinψ. v1 = nx, v2 = ny cos γ, v3 = ny sin γ.

В разделе 3.3 рассмотрена задача терминального управления с фикси-

рованным временем при отсутствии ограничений: для системы (15) най-

ти непрерывные управления nx, ny и γ, которые переводят систему (15)

из заданного начального состояния

(H0, L0, Z0, V0, ϑ0, ψ0), (nx0, ny0, γ0) (17)

при t = 0 в заданное конечное состояние

(H∗, L∗, Z∗, V∗, ϑ∗, ψ∗), (nx∗, ny∗, γ∗) (18)

за заданное время t∗. Для решения данной задачи система (16) запи-

сывается в виде системы из трех дифференциальных уравнений второго

порядка 
ÿ1 = −g + v1g sinϑ+ v2g cosϑ,

ÿ2 = v1g cosϑ cosψ − v2g sinϑ cosψ + v3g sinψ,

ÿ3 = −v1g cosϑ sinψ + v2g sinϑ sinψ + v3g cosψ,

(19)

которая в области Ω = {|ϑ| < π
2 , |ψ| < π, V > 0} разрешима относительно

управлений. Поэтому для любой траектории движения, заданной в виде
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yi = yi(t) ∈ C2[0, t∗], t ∈ [0, t∗], i = 1, 3 можно найти управления vi =

= vi(t), реализующие данную траекторию. В качестве таких функций

были выбраны многочлены пятой степени следующего вида

yi(t) =
2∑
j=0

y
(j)
i0

j!
tj +

3∑
j=1

cijt
2+j, i = 1, 3, (20)

где y
(j)
i0 и cij — коэффициенты, однозначно определяющиеся из (17), (18).

В разделе 3.4 рассматривается задача улучшения свойств траектории,

полученной в разделе 3.3, методами конечномерной оптимизации при сво-

бодном моменте времени t∗. Поскольку граничные условия полностью

определяют вид полинома (20) и получаемых программных траектории

и управлений, была рассмотрена задача выбора времени маневра таким

образом, чтобы удовлетворялись наложенные на переменные состояния

и управления ограничения. Искомое время t∗ получается как решение

следующей задачи одномерной минимизации при наличии ограничений:

t∗|u∈U, s∈(Ω∩S), t∗∈T → min, (21)

где u = (nx, ny, γ) – вектор управлений, s = (H,L, Z, V, ϑ, ψ) – вектор пере-

менных состояния, T – множество допустимых значений времени маневра

t∗, множества S и U задаются неравенствами (22) и (23) соответственно,

H ∈ [Hmin, Hmax], L ∈ [Lmin, Lmax], Z ∈ [Zmin, Zmax], V ∈ [Vmin, Vmax],

|ϑ| ≤ π
2 , ϑ ∈ [ϑmin, ϑmax], ψ ∈ [ψmin, ψmax],

(22)

γ ∈ [γmin, γmax], nx ∈ [nxmin, nxmax], ny ∈ [nymin, nymax]. (23)

Вместо задачи (21) в разделе 3.4 предлагается использовать задачу без-

условной минимизации с критерием

J(tm) =

{
tm, если u(t) ∈ U, s(t) ∈ (Ω ∩ S), ∀t ∈ [0, tm],

t̂∗ +
∑6

i=1 ai∆si +
∑3

i=1 bi∆ui, иначе,
(24)

где u(t) и s(t) – решения граничной задачи (17), (18) при t∗ = tm, t̂∗ –

верхняя граница отрезка T̂ = [t̂0, t̂∗], используемого в качестве области

возможных значений t∗, ∆si – величина максимального по абсолютной
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величине отклонения i-й переменной состояния от допустимого диапазо-

на (22), ∆ui – величина максимального по абсолютной величине откло-

нения i-ого управления от допустимого диапазона (23), ai, bi – весовые

множители.

В разделе 3.5 приведены результаты численного решения задачи (24).

В разделе 3.6 представлен альтернативный способ построения про-

граммной траектории, удовлетворяющей наложенным на состояния огра-

ничениям. Основным отличием предлагаемого способа является исполь-

зование фазовой плоскости, а не пространства состояний. В основу мето-

да положен способ решения следующей задачи терминального управле-

ния с фиксированным временем при наличии ограничений на переменные

состояния: для динамической системы

ÿ + f(y, ẏ) = g(y, ẏ)u (25)

найти управление u(t), которое переводит систему (25) за время t∗ из

заданного начального положения в заданное конечное

y(0) = y0, ẏ(0) = ẏ0, y(t∗) = y∗, ẏ(t∗) = ẏ∗, tinf < t∗ < tsup,

tinf =

∫ y∗

y0

dy

ψ+(y)
, tsup =

∫ y∗

y0

dy

ψ−(y)
,

(26)

при наличии ограничений на переменные состояния

Y =
{

(y, ẏ) ∈ R2 : y ∈ [y0, y∗], 0 < ψ−(y) < ẏ < ψ+(y), ψ±(y) ∈ C1[y0, y∗]
}
,

(27)

считая, что g(y, ẏ) 6= 0 при (y, ẏ) ∈ Y и управление является непрерывной
функцией времени.

Решение задачи (25)–(27) эквивалентно нахождению функции ψ(y) ∈
∈ C1[y0, y∗], удовлетворяющей следующим условиям:∫ y∗

y0

dy

ψ(y)
= t∗, (28)

0 < ψ−(y) < ψ(y) < ψ+(y), y ∈ [y0, y∗], (29)

ψ(y0) = ψ0, ψ(y∗) = ψ∗. (30)

Искомая функция ψ(y) представляется в виде:

ψ(y) =
ψ+ε̄(y)ψ−ε̂(y)

c∗ψ−ε̂(y) + (1− c∗)ψ+ε̄(y)
, (31)
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где

c = c∗ =
t∗ − t−(ε̂)

t+(ε̄)− t−(ε̂)
∈ (0, 1), t+(ε̄) =

∫ y∗

y0

dy

ψ+ε̄(y)
, t−(ε̂) =

∫ y∗

y0

dy

ψ−ε̂(y)
.

Функции ψ+ε̄(y) и ψ−ε̂(y) зависят от вычисляемых параметров ε̄ =

= (ε+, ε0, ε∗) и ε̂ = (ε−, ε0, ε∗) соответственно.

Построенной функции ψ(y) (31) соответствует программное управле-

ние, являющееся решением задачи (25)–(27) и имеющее вид:

u(y(t)) = [ψ′(y(t))ψ(y(t)) + f(y(t), ψ(y(t)))]/g(y(t), ψ(y(t))),

где y(t) — программная траектория, вычисляемая согласно ẏ = ψ(y).

Стабилизирующее управление имеет вид:

u(y) = [ÿ(t) + f(y, ẏ)− k1(ẏ − ẏ(t))− k2(y − y(t))]/g(y, ẏ),

где k1, k2 > 0 – константы, задающие динамику убывания ошибки e =

= y − y(t).

Наличие параметров-векторов ε̄ и ε̂, от которых зависит искомая

функция (31), позволяет искать решение задачи (25)–(27) в параметриче-

ском классе функций. Эта трактовка позволяет использовать оптимиза-

ционный подход к решению данной задачи, что дает возможность нахо-

дить траектории, обеспечивающие уменьшение максимального значения

программного управления, уменьшение среднего значения управления и

т.д. Приведены результаты анализа численного решения задачи (25)–

–(27).

Предложенный метод решения имеет обобщение на следующую тер-

минальную задачу: для аффинной системы

ẋ = A(x) +B(x)u, x ∈ R2n, u ∈ Rn, (32)

приводимой к каноническому виду
ÿ1 = f1(y, ẏ) +

n∑
j=1

g1j(y, ẏ)uj,

. . .

ÿn = fn(y, ẏ) +
n∑
j=1

gnj(y, ẏ)uj, y = (y1, . . . , yn)
T ,

(33)
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найти управления ui(t), i = 1, n, которые переводят систему (33) за время

t∗ из заданного начального положения в заданное конечное

yi(0) = yi0, ẏi(0) = ẏi0, yi(t∗) = yi∗, ẏi(t∗) = ẏi∗, i = 1, n, (34)

при наличии следующих ограничений на переменные состояния:

Y =
{

(y, ẏ) ∈ R2n : yi ∈ [yi0, yi∗], 0 ≤ ψi−(yi) ≤ ẏi ≤ ψi+(yi),

ψi± ∈ C[yi0, yi∗], i = 1, n
}
,

(35)

предполагая, что матрица G(y, ẏ) = ||gij(y, ẏ)||, i, j = 1, n является не-

вырожденной при (y, ẏ) ∈ Y и управления ui являются непрерывными

функциями времени.

Лемма. Для существования решения задачи (33)-(35) необходимо и

достаточно, чтобы ограничения удовлетворяли следующим соотношени-

ям:
ψi−(yi0) < ẏi0 < ψi+(yi0), ψi−(yi∗) < ẏi∗ < ψi+(yi∗),∫ yi∗

yi0

dy

ψi+(y)
≤ t∗ ≤

∫ yi∗

y0i

dy

ψi−(y)
, i = 1, n.

(36)

Решение искомой терминальной задачи (33)-(35) имеет вид

u(y(t)) = G−1(y(t), ψ(y(t)))

 ψ′1(y1(t))ψ1(y1(t))− f1(y(t), ψ(y(t)))

. . . . . . . . .

ψ′n(yn(t))ψn(yn(t))− fn(y(t), ψ(y(t)))

 ,

ψ(y) = (ψ1(y1), . . . , ψn(yn))
T .

(37)

Данным методом получено решение терминальной задачи (16)-(18) при

наличии следующих ограничений на переменные состояния:

Ḣmin < Ḣ < Ḣmax, L̇min < L̇ < L̇max, Żmin < Ż < Żmax. (38)

Вводя новые «виртуальные» управления

u1 = −g + v1g sinϑ+ v2g cosϑ,

u2 = v1g cosϑ cosψ − v2g sinϑ cosψ + v3g sinψ,

u2 = −v1g cosϑ sinψ + v2g sinϑ sinψ + v3g cosψ,

(39)
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систему (16) можно записать в следующем виде:
Ḧ = u1,

L̈ = u2,

Z̈ = u3.

(40)

Решение задачи (16)-(18), (38) получается согласно (37). При этом упра-

вления v1, v2 и v3 выражаются через новые «виртуальные» управле-

ния (39) при помощи следующих соотношений:
v1 =

(u1 + g) sinϑ+ u2 cosϑ cosψ − u3 cosϑ sinψ
g ,

v2 =
(u1 + g) cosϑ− u2 sinϑ cosψ + u3 sinϑ sinψ

g ,

v3 =
u2 sinψ + u3 cosψ

g .

Исходные управления nx, ny и γ определяются как

nx = v1, γ = arctg(v3/v2), ny = v2/ cos γ.

Основные выводы и заключение по работе

Метод параметрических расширений множеств траекторий позволя-

ет находить решения терминальных задач для обратимых систем как с

дополнительными свойствами, так и с улучшенными характеристиками.

Для n-мерных систем, которые приводятся к регулярному каноническому

виду, в котором все индексы приводимости равны двум, данный метод

позволяет получать аналитическое решение терминальной задачи при на-

личии ограничений на переменные состояния.

Использование параметрических расширений множеств траекторий

позволяет получать решение задачи переориентации КА в классе непре-

рывных управлений, близкое к оптимальному решению по использован-

ному критерию качества.

Использование параметрических расширений множеств траекторий

для шестимерной модели ЛА позволило предложить аналитический ме-

тод построения пространственных траекторий ЛА с учетом ограничений

на переменные состояния.

Вместе с тем необходимо дальнейшее расширение класса систем, для

которых применим метод параметрических расширений множеств тра-

екторий а так же аналитический метод построения траекторий с учетом
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наложенных ограничений на переменные состояния. Для улучшения при-

менимости аналитического метода в практических задачах необходимо

дальнейшее его развитие с целью возможности автоматического учета

ограничений на производные более высокого порядка, нежели это пред-

ставлено в данной работе.
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