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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 
Развитие многих отраслей техники тесно связано с поиском и 

внедрением более эффективных материалов. Комплекс термоэлектрических 
явлений был открыт в середине 19 века, но широкое практическое 
применение нашлось спустя более века, когда были открыты 
высокоэффективные полупроводниковые  термоэлектрические материалы. В 
настоящее время термоэлектрические технологии нашли свое практическое 
применение в различных направлениях, главным образом в генерации 
электрической энергии, принудительном температурном воздействии и 
чувствительных элементах. Традиционно в приведенных областях 
используются объемные термоэлектрические материалы, получаемые из 
кристаллических слитков сложной стехиометрии механическими методами, 
обладающие высоким уровнем термоэлектрических свойств.  

В настоящее время имеется значительный интерес к 
термоэлектрическим материалам в виде тонких (менее 1 мкм) пленок, 
которые применяются в чувствительных элементах радиационного типа, а 
также имеется ряд перспективных новых направлений, таких как создание 
гибких и вибрационно стойких термоэлектрических генераторов, 
микрокалориметрии в экспресс биолабораториях, высоколокализованных 
систем охлаждения и др. 

Для создания термоэлектрической пленки толщиной менее 1 мкм 
требуется применение вакуумных технологий нанесения материала. В 
комнатном диапазоне температур наиболее используемым материалом 
являются многокомпонентные твердые растворы на основе теллурида 
висмута с легирующими компонентами по причине наибольшей 
эффективности термоэлектрического преобразования. Использование 
вакуумных методов нанесения таких материалов затруднено из-за сложности 
обеспечения стехиометрического состава конденсированного материала в 
виде тонкой пленки на некоторой площади. По этой причине на сегодняшний 
день зачастую в промышленности применяются менее эффективные 
однокомпонентные термоэлектрические материалы. 

Одним из современных методов нанесения материалов в виде тонких 
пленок сложной стехиометрии является метод импульсного лазерного 
осаждения. Данный метод использовался при напылении рентгеновских 
зеркал в работах Салащенко Н.Н. и Гапонова С.В., сверхпроводников на 
основе YBaCuO и на сегодняшний день используется при решении 
разнообразных исследовательских задач, в том числе таких сложных и 
передовых как создание топологических изоляторов. 
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В настоящей работе ставится задача исследования возможности 
создания высокоэффективных термоэлектрических материалов в виде тонких 
пленок, обладающих достаточным уровнем однородности свойств на 
заданной площади, с помощью метода импульсного лазерного осаждения с 
целью улучшения характеристик приемников излучения, а также создания 
технологического задела для дальнейшего развития перспективных 
направлений использования высокоэффективных термоэлектрических 
материалов в виде тонких пленок.  

Целью работы является разработка технологического процесса 
получения пленок p-(Bi,Te)Sb и n-(Bi,Te)Se, на полиимидном материале 
методом импульсного лазерного осаждения. 

Для достижения цели были решены следующие задачи: 
1. Анализ мирового опыта получения и использования 

термоэлектрических материалов на основе теллурида висмута в виде тонких 
пленок, формулирование требований к получаемым пленкам и выбор 
технологии получения пленок. 

2. Разработать и экспериментально проверить математическую 
модель процессов, связанных с формированием высокоэффективных 
термоэлектрических пленок, определяющую взаимосвязь морфологических 
характеристик получаемых пленок и условий роста.  

3. Создать лабораторный комплекс для локального измерения 
удельного электрического сопротивления и коэффициента Зеебека. 

4. Изготовить образцы пленок p-(Bi,Te)Sb и n-(Bi,Te)Se на 
полиимидных подложках и исследовать влияние условий роста этих пленок 
на их термоэлектрические свойства.  

5. Анализ перспектив и возможностей практической реализации 
термоэлектрических пленок, изготовленных на основе разработанного 
технологического процесса.  

Научная новизна работы состоит в следующем: 
1. Разработана математическая расчетная модель, позволяющая 

определить профиль термоэлектрического материала в диапазоне толщин от 
10 до 1000 нм, получаемого методом импульсного лазерного осаждения, с 
учетом вращения подложки, параметра внесоосности и закона движения 
точки лазерной обработки.  

2.  Получена экспериментальная зависимость коэффициентов 
Зеебека и удельного электрического сопротивления трехкомпонентных 
термоэлектрических материалов на основе p-(Bi,Te)Sb и n-(Bi,Te)Se, 
формируемых на полиимидном основании в виде тонких пленок методом 
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импульсного лазерного осаждения от температуры роста, дистанции разлета 
продуктов лазерной абляции и давления окружающей среды. Согласно 
данной зависимости, в области температур от 250 до 400 °С и при давлении 
от 0.1 до 1.0 торр достигается максимальный уровень термоэлектрических 
свойств получаемого материала. 

Практическая ценность работы заключается в следующем: 
1. Разработаны измерительный стенд и необходимые методики для 

локального и единовременного определения величины коэффициента 
Зеебека и удельного электрического сопротивления наноразмерных 
термоэлектрических пленок, сформированных на гибкой подложке. 

2.  Определены наиболее эффективные сочетания технологических 
параметров процесса импульсного лазерного осаждения, позволяющие 
получать субмикронные термоэлектрические пленки трехкомпонентных 
термоэлектрических материалов на основе теллурида висмута на 
полиимидном материале со значениями коэффициента Зеебека до 200 мкВ/К. 

3. Разработаны и испытаны серии макетных образцов приемников 
излучения с коэффициентом преобразования, превышающим 0.75 В/Вт за 
счет использования в своей основе высокоэффективных термоэлектрических 
материалов в виде тонких пленок. 

Методы исследования. Поставленные задачи решались с 
использованием теоретических и экспериментальных методов исследования. 
Расчеты профиля осаждаемого материала и тепло-физическая модель 
приемников излучения проводились с использованием стандартного 
продукта MATHCAD 14. Образцы термоэлектрических материалов в виде 
тонких пленок создавались на модуле PLD комплекса Нанофаб-100. 
Измерения профиля пленки проводились на высокоточном профилометре 
KLA-Tencor P-17. Изменение массы мишени и образцов проводилось с 
использованием весов Cubis. При испытаниях макетных серий приемников 
излучения использован образцовый приёмник типа ПОИ-1 №11 с конусным 
приемным элементом.  

Достоверность проведенных исследований обеспечивается 
использованием современного технологического лазерного оборудования, 
известных и широко используемых методик определения 
термоэлектрических параметров, статистической обработкой результатов 
измерений и соответствием требованиям ГОСТ при проведении испытаний 
макетных образов.  

Апробация работы. Основные результаты диссертационной работы 
были доложены на международной научно-технической конференции 
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«Научные принципы и подходы, методы и технологии, системный анализ и 
статистическая обработка данных о создании, диагностике, модернизации 
композиционных материалов и покрытий с нанодобавками, работающих в 
условиях динамического и высокоэнергетического нагружения». Москва, 
2013; международной научно-технической конференции «Лазеры и лазерно-
информационные технологии: Фундаментальные проблемы и применения». 
Шатура (МО), 2014; всероссийской научно-технической конференции 
«Будущее машиностроения России». Москва, 2012, 2013. 

Публикации. Основное содержание и результаты диссертационной 
работы изложены в 4-х статьях, опубликованных в изданиях, 
рекомендованных ВАК РФ, 4-х патентах на изобретение № 2516632, № 
2657283, № 2601209, № 2632729, 2-х патентах на полезную модель № 153533, 
№ 167784 и 2-х отчетов по НИР, проводимых за счет поддержки Фонда 
Содействия Инновациям.  

Диссертация состоит из списка основных условных сокращений и 
обозначений, введения, четырех глав, общих выводов, заключения, списка 
литературы из 120 наименований и приложения. Работа содержит 131 
страницу машинописного текста, в том числе 27 таблиц и 41 рисунок. 

В введении обоснована актуальность темы, указаны цель работы, 
научная новизна, практическая ценность работы, сведения об апробации 
работы и публикациях. Актуальность выбранной темы связана с 
необходимостью выпуска современных отечественных средств измерения и 
малогабаритных источников тока, а также развитием ряда новых 
направлений в приборостроении, базирующихся на использовании комплекса 
термоэлектрических явлений. В связи с ней остро стоит проблема разработки 
отечественного технологического процесса получения термоэлектрических 
материалов в виде тонких пленок, обладающих высоким уровнем 
термоэлектрических свойств. 

В первой главе проведен литературный обзор, посвященный 
актуальности использования высокоэффективных термоэлектрических 
материалов в виде тонких пленок в микроэлектронике. Актуальными 
являются следующие направления: широкодиапазонные приемники 
излучения, малоградиентные термоэлектрические генераторы, экспресс 
биолаборатории, использующие микрокалориметрические измерения, 
высоколокализованные системы термостабилизации и охлаждения. 

Для обеспечения высокого уровня термоэлектрического 
преобразования основным вопросом является необходимость получения 
тонких (менее 1 мкм) термоэлектрических пленок p- и n- типов 
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проводимости сложного химического состава. В диапазоне температур до 
300 градусов Цельсия наиболее используемым материалом являются 
многокомпонентные твердые растворы на основе теллурида висмута с 
легирующими компонентами по причине наибольшей эффективности 
термоэлектрического преобразования. 

Проведенный анализ существующих методов создания тонких пленок, 
в том числе термоэлектрических, показал перспективность применения 
метода импульсного лазерного осаждения, отличительной чертой которого 
является возможность обеспечения формирования пленок сложной 
стехиометрии малой толщины в широком диапазоне условий роста.  

Мировой опыт показывает принципиальную возможность получения 
высокоэффективных термоэлектрических материалов методом ИЛО на 
кристаллических подложках, однако не исследован вопрос возможности 
использования гибких подложек на основе ароматических полиимидов. 
Проведенный анализ особенностей импульсного лазерного осаждения 
материалов показал, что конгруэнтность переноса материала зависит от 
таких особенностей лазерной обработки как: плотность энергии обработки, 
длительность импульсов и их скважность. В работах С.И. Анисимова 2002, 
R.K. Singh 1990 показано, что однородность разлета атомов 
многокомпонентного абляционного факела увеличивается с ростом его 
температуры и достигает высоких значений при температурах более 3000 К.  

На основании проведённого литературного обзора были 
сформулированы задачи исследования. 

Во второй главе описано используемое технологическое оборудование 
для лазерного нанесения термоэлектрического материала в вакууме, 
используемые методики и конструкция лабораторного стенда для локального 
измерения термоэлектрических параметров. 

В качестве исходных выбраны термоэлектрические материалы 
производства ООО «Термоинтех» со следующими характеристиками: 

Таблица 1.  
Свойства использованных термоэлектрических материалов 

 Материал n-типа Материал p-типа 
Коэффициент Зеебека, мкВ/ºС 190 .. 210 200 .. 210 
Электропроводность, Ом-1см-1 800 .. 1100 900 .. 1200 
Теплопроводность, Вт/(м· ºС)  Менее 1.45 Менее 1.40 
Максимальная добротность, ºС-1 Не менее 2.8·10-3 Не менее 3.2·10-3 

 
В качестве подложек в работе использовалась полиимидная пленка 

марки ПМ-А, изготовленная в соответствии с ТУ 6-19-121-85.  
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Измеренные методом «ступеньки» экспериментальные профили 
толщин хорошо согласуются (R2=0.996) с расчетной моделью. Проведена 
дополнительная независимая проверка адекватности и достоверности 
расчетной модели с использованием гравиметрического метода. Для этого 
измерялись массы мишени и подложки до и после проведения лазерной 
обработки и проводилось сравнение коэффициента использования материала 
с предсказанным по расчетной модели. 

С использованием полученной модели профиля толщины пленки далее 
проводилось исследование влияния технологических параметров на 
термоэлектрические свойства пленок.  

Выбор плотности энергии лазерной обработки проводился расчетным 
способом на основе критериев обеспечения конгруэнтного переноса 
материала и коэффициента реиспарения менее 0.3. Для оценки температуры 
при лазерной обработке решалось следующее дифференциальное уравнение 
теплопроводности: 

ܣ ∙
߲ܶሺݔ, ሻݐ

ݐ߲
ൌ ߣ ∙

߲ଶܶሺݔ, ሻݐ

ଶݔ߲
൅ ,ݐሺܫ  ሻݔ

 
(5) 

А – коэффициент, описывающий затраты на плавление и испарение 
материала, ߣ – коэффициент теплопроводности, ܫሺݐ,  ሻ – функция источникаݔ
энергии лазерного импульса. 

Коэффициент поглощения энергии лазерного излучения образующейся 
плазмой можно выразить следующим образом: 

௉ߙ ൌ 3.69 ∙ 10଼ ቆ
ܼଷ ∙ ݊௜

ଷ

ܶ଴.ହ ∙ ߭ଷ
ቇ൭1 െ ex pሺ

െ݄߭
݇ܶ

൰൱ 
 
(6) 

Z, n, T – средний заряд, ионная плотность, температура плазмы, h, k,		߭ 
– постоянные Планка, Больцмана и частота излучения.  

Тогда энергию обработки поверхности с учетом плазменного 
экранирования можно выразить следующим образом: 

ܲ ൌ ଴ܲሺ݁ିఈು∙௫ሻ (7) 
Р – доза облучения материала мишени, x – размер плазмы в 

направлении перпендикулярном мишени, Р0 – мощность лазерного 
излучения. 

В работах J. Schou показано, что при высоких температурах плазмы 
атомы, имеющие большие энергии разлета, начинают выбивать атомы с 
поверхности сформированной пленки. Интенсивность распыления зависит от 
физических свойств сформированной пленки и используемой подложки – от 
когезионной и атомной тормозящей сил. Интенсивность распыления можно 
оценить следующим выражением: 
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№11 2003 гогда  с конусным приёмным элементом. Данный приёмник имеет 
обмотку нагревателя, позволяющую производить калибровку с помощью 
электрической мощности. Конструкция приёмника обеспечивает высокую 
эквивалентность замещения оптической мощности электрической (не хуже 
1%). Перед проведением измерений, изделия выдерживались в течение 
получаса для обеспечения температурной равномерности. 

К основным характеристикам рассматриваемых приемников излучения 
относятся коэффициент преобразования Кп, время выхода на уровень 
сигнала 99% и постоянная времени τ, соответствующая тепловой 
инерционности изделия.  

В основную выборку макетных образцов вошли следующие варианты 
исполнения: Серия №1, №2 – одноэлементные модули, Серия №3 – приемник 
из 20 термоэлементов прямоугольной схемы исполнения, Серия №4 – 
приемник из 50 термоэлементов дисковой схемы исполнения. 

Таблица 3.  
Результаты испытаний приемников излучения 

 Кп, В/Вт t99, с τ, с 
 Изм. Расч. Изм. Расч. Изм. Расч. 

Серия №1 0.75±0.01 0.70±0.14 13±1.0 14±0.6  3±0.1 
Серия №2 0.63±0.06 0.97±0.26 6±0.5 10±0.6  2.2±0.1 
Серия №3 0.59±0.06 0.63±0.13  18±0.8   
Серия №4 1.10±0.08 1.10±0.28 17±1.0 24±1.01 3.7 5.3±0.1 
Полученные значения показывают достоверность проектного расчета и 

проведенных ранее измерений термоэлектрических параметров пленок, а 
также перспективность использования разработанного технологического 
процесса создания приемников излучения с использованием 
высокоэффективных термоэлектрических материалов, получаемых методом 
импульсного лазерного осаждения.  

Полученные результаты (серия №4 в Таблице 3) соответствуют 
высокому мировому уровню технических характеристик приемников 
излучения. Совместно с ФГУП ВНИИОФИ и ИВТ РАН были проведены 
измерения ряда характеристик разработанных макетных образцов 
приемников излучения дискового типа.  

Полученные в ходе настоящего исследования научные, 
технологические и опытно-конструкторские наработки переданы во ФГУП 
ВНИИОФИ с целью совместной организации серийного производства 
универсальной линейки радиационных приемников термоэлектрического 
типа, предназначенных для проведения измерений параметров различного 
лазерного излучения и излучения абсолютно черного тела.  
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Основные выводы по работе 
1. Разработан технологический процесс импульсного лазерного осаждения, 
обеспечивающий получение высокоэффективных термоэлектрических 
материалов на основе p-(Bi,Te)Sb и n-(Bi,Te)Se  в виде пленок толщиной от 
100 до 1000 нм на гибкой подложке из полиимидного материала толщиной 
100 мкм: 
 а. Установлено, что при плотности энергии лазерной обработки 1.2 

Дж/см2, частоте следования импульсов 15 Гц, температуре роста 400 °С, 
давлении 0.8 торр и расстоянии между мишенью и подложкой 110 мм 
пленки n-Bi2Te2.7Se0.3 обладают фактором мощности в 6.5·10-4 Вт·К-2м-1 и 
коэффициентом Зеебека 210 мкВ/К. 

 б. Установлено, что при плотности энергии лазерной обработки 1.2 
Дж/см2, частоте следования импульсов 15 Гц, температуре роста 350 °С, 
давлении 0.65 торр и расстоянии между мишенью и подложкой 110 мм 
пленки p-Bi0.5Sb1.5Te3 обладают фактором мощности в 6.1·10-4 Вт·К-2м-1 
и коэффициентом Зеебека 180 мкВ/К. 

2. Разработана математическая расчетная модель, позволяющая определить 
профиль толщины термоэлектрического материала, получаемого методом 
импульсного лазерного осаждения, с учетом вращения подложки, параметра 
внесоосности и закона движения точки лазерной обработки. Достоверность 
расчетной модели проверена экспериментально методами высокоточной 
профилометрии и гравиметрии. 
3. Разработана конструкция измерительного стенда, использующего 
четырехзондовый метод измерения удельного сопротивления тонких пленок 
и двухзондовый метод измерения коэффициента Зеебека. Конструкция 
измерительной головки защищена патентом на полезную модель №167784. 
4. Проведен проектный расчет приемников излучения, показавший 
целесообразность использования высокоэффективных термоэлектрических 
материалов и полиимидного основания при создании приемников излучения, 
ориентированных на измерения характеристик параметров излучения в 
диапазоне от 1 мкВт до 1 Вт.   
5. Разработан технологический процесс создания радиационных 
термоэлементов с использованием высокоэффективных термоэлектрических 
материалов p-(Bi,Te)Sb и n-(Bi,Te)Se методом импульсного лазерного 
осаждения с использованием масок.   
6. Разработана, согласована и передана во ФГУП ВНИИОФИ конструкция 
дискового приемника, работающего в диапазоне мощностей от 30 мкВт до 1 
Вт для организации серийного производства.  
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