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Общая характеристика работы 

Актуальность темы исследования. Проблема надежности технических 

устройств существует уже несколько веков и ей посвящено множество работ 

различных авторов. С каждым годом сложность технических устройств только 

увеличивается и возникает задача оценки и повышения показателей 

надежности для сложных технических систем, которые состоят из десятков и 

сотен тысяч элементов. Проведение испытаний сложных технических систем 

является основным способом определения показателей их надежности. При 

этом вследствие повышения надежности комплектующих, время испытаний 

системы может доходить до нескольких лет. Проведение таких долгосрочных 

испытаний является ресурсозатратным. В связи с этим начали применять 

форсированные испытания. Эффект ускорения испытаний в основном 

достигается за счѐт ужесточения их режимов, что приводит к более быстрому 

отказу всех изделий. Проблема форсированных испытаний рассматривается в 

работах многих авторов, как в нашей стране, так и за рубежом. Среди наиболее 

известных авторов можем выделить Г.Д. Карташова, В. Нельсона, Н. 

Сингпурвалла, Л.А. Эскобара.  

С другой стороны, испытания технических систем приводят к получению 

данных сложной структуры, которые требуют специальных методов 

статистической обработки. Анализом результатов испытаний систем 

занимались И.В. Павлов, С. Майерс, Л. Кроу. Большинство существующих 

статистических методов обработки результатов испытаний сложных 

технических систем являются параметрическими. Но, на практике 

распределение наработок до отказа элементов систем не всегда является 

известным, что требует создания непараметрических методов анализа 

надежности сложных технических систем. 

Таким образом, существует необходимость в разработке статистических 

методов, которые позволят сократить продолжительность и объѐм 

предварительных исследований в форсированных испытаниях, а также в 

создании непараметрических методов проверки зависимостей между 

распределениями однотипных элементов, функционирующих в составе 

сложных систем различной длины. 

Степень разработанности. Для случая нестабильного производства Г.Д. 

Карташовым в 1980 году предложена общая методология проведения 

форсированных испытаний, включающая: 

1. Выбор форсированных режимов. 

2. Проведение специальным образом организованных испытаний изделий 

одной партии (предварительных исследований) для определения инвариантного 

для любых других партий коэффициента ускорения форсированных испытаний. 

3. Обоснование применения полученных результатов для новых партий 

исследуемых изделий. 

Особенностью общей схемы при проведении предварительных 

исследований является необходимость проведения испытаний в нормальном 

режиме, что приводит к неоправданным финансовым и временным затратам. 
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В работах В.И. Тимонина и М.А. Ермолаевой показано, что 

использование оценок Каплана − Мейера для оценки функции надежности 

позволяет исключить испытания в нормальном режиме из общего цикла 

предварительных исследований, оставив только испытания в переменном 

режиме. Для частных случаев показана возможность сократить 

продолжительность предварительных исследований, используя возможности 

анализа цензурированных данных.  

В работе разработаны статистические методы, оптимизирующие объѐм и 

продолжительность предварительных исследований при проведении 

форсированных испытаний. Методы основаны на применении оценок Каплана 

− Мейера функции надежности и использовании критериев типа Реньи для 

анализа неполных данных. Методы не требуют знания распределения 

наработок до отказа испытываемых элементов, что является их существенным 

преимуществом для применения на практике.  

Разработанные в работе методы статистического анализа обработки 

результатов форсированных испытаний могут применяться также для решения 

широкого круга задач в испытаниях последовательных и параллельных 

сложных технических систем, многие из которых пока решены только в 

параметрической постановке. К этим задачам относятся проверка соотношений 

между распределениями наработок до отказа элементов в системах разной 

длины или кратности: проверка однородности распределений и проверка 

справедливости широко применяемой модели Кокса в двухвыборочном и 

многовыборочном случаях. Предложенные в работе методы позволяют 

находить решение этих задач без знания распределения наработок до отказа 

элементов систем. 

Цель работы – разработка новых методов проведения испытаний в 

различных режимах, а также создание моделей и алгоритмов анализа их 

результатов, позволяющих сократить объѐм и продолжительность испытаний. 

При этом предложенные методы статистического анализа не зависят от вида 

законов распределения наработок до отказа, а также применимы к неполным 

данным. 

Для достижения поставленной цели потребовалось решение двух 

основных задач.  

Первая задача – определение функции пересчѐта результатов 

форсированных испытаний на нормальный режим в случае цензурированных 

справа данных. Для решения этой задачи понадобилось: 

1. Модифицировать применяемые методы проведения предварительных 

исследований в случае ограничения их продолжительности. 

2. Разработать точные и асимптотические статистические методы оценки 

коэффициента ускорения испытаний. 

Вторая задача – разработка статистических критериев для проверки 

справедливости модели Кокса, и как частный случай, проверки однородности 

распределений наработок до отказа элементов по результатам испытаний 

последовательных и параллельных систем. Для решения второй задачи 

потребовалось: 
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1. Разработать статистические методы проверки гипотезы однородности и 

справедливости модели Кокса в двухвыборочном и многовыборочном случаях 

по прогрессивно цензурированным выборкам при их произвольных объѐмах. 

2. Получить способ оценки параметра Кокса. 

Методы исследования. Для решения задач при выполнении 

диссертационной работы были использованы методы теории вероятностей и 

математической статистики, математического анализа, функционального 

анализа, вычислительной математики и методы математического 

моделирования. 

Достоверность и обоснованность научных результатов и 

математических выводов подтверждается строгостью используемого 

математического аппарата. Сформулированные в работе допущения 

обоснованы как содержательным образом, так и методами математического 

моделирования. 

Научная новизна. В работе получены следующие новые научные 

результаты, выносимые на защиту: 

1. Для случая ограничения времени проведения предварительных 

испытаний разработан метод оценки коэффициента ускорения, основанный на 

минимизации статистики типа Реньи. Предложен метод вычисления точных 

распределений этой статистики, позволяющий их табуляцию для больших 

объѐмов выборок. Представлено асимптотическое распределение статистики.  

2. Для проверки однородности распределений наработок до отказа 

элементов по результатам испытаний двух выборок систем различной 

кратности предложены два новых критерия: для полных выборок – типа 

Колмогорова − Смирнова, для цензурированных справа данных – типа Реньи. 

На основе модели случайного блуждания разработаны методы вычисления 

точных распределений статистик. При условии справедливости проверяемой 

гипотезы доказана сходимость распределения статистик к стандартным 

распределениям Колмогорова – Смирнова и Реньи. Для таких же испытаний 

новые полученные результаты обобщены на случай проверки справедливости 

модели Кокса.  

3. Для проверки однородности распределений наработок до отказа 

элементов по результатам испытаний нескольких выборок систем различной 

кратности впервые предложен критерий типа Кифера – Гихмана. Разработан 

метод вычисления точных распределений статистики критерия. Показано, что в 

качестве предельного распределения предложенной статистики может быть 

использовано предельное распределение статистики Кифера – Гихмана. 

4. Методом Монте-Карло исследованы статистические свойства оценок 

коэффициента ускорения по результатам предварительных исследований и 

оценок параметра модели Кокса по результатам испытаний систем различной 

кратности. В качестве оценок использовались значения параметров, 

минимизирующие новые предложенные статистики критериев. 

Теоретическая и практическая значимость диссертационной работы 

состоит в том, что представленные результаты могут быть использованы при 

оптимизации проведения форсированных испытаний и повышении точности 
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оценок показателей надежности при испытаниях сложных технических систем 

за счѐт применения непараметрических методов.  

Апробация результатов. Результаты диссертационной работы доложены 

на научных семинарах кафедры «Высшая математика» МГТУ им. Н.Э. Баумана 

(2014, 2015); Международной научной конференции «Фундаментальные 

проблемы системной безопасности и устойчивости» (Москва, 2013); 

Международной научной конференции «Акустооптические и 

радиолокационные методы измерений и обработки информации» (Суздаль, 

2014); Международном симпозиуме «Надежность и качество» (Пенза, 2014). 

Публикации. Основные научные результаты диссертации отражены в 8 

научных работах, в том числе 5 статей в научных журналах и изданиях, 

которые включены в Перечень российских рецензируемых научных журналов и 

изданий для опубликования основных научных результатов диссертации, и 

материалах трех международных конференций. 

Личный вклад соискателя. Все исследования, результаты которых 

изложены в диссертационной работе, проведены лично соискателем в процессе 

научной деятельности. Из совместных публикаций в диссертацию включен 

лишь тот материал, который непосредственно принадлежит соискателю, 

заимствованный материал обозначен в работе ссылками. 

Структура и объем работы. Диссертация состоит из введения, четырех 

глав, заключения и списка литературы. Диссертационная работа изложена на 

101 страницах, содержит 11 иллюстраций и 14 таблиц. Библиография включает 

65 наименований. 

 

Содержание работы 

Во введении обоснована актуальность решаемой проблемы, 

сформулированы цель и задачи исследования, определены научная новизна и 

теоретическая и практическая значимость полученных результатов, их 

достоверность, основные положения, выносимые на защиту, а также приведены 

данные о структуре и объеме диссертационной работы. 

В первой главе дан краткий обзор существующих методов обработки 

результатов форсированных испытаний. Описана общая методология 

проведения предварительных исследований, предложенная Г.Д. Карташовым. 

Представлено уточнение этой методологии, предложенное В.И. Тимониным. 

Его особенностью является использование оценки Каплана − Мейера функции 

надежности, что позволяет не проводить испытания в нормальном режиме. 

Задача проверки гипотезы о виде функции пересчѐта  0 0:H     

наработок до отказа в нормальном и форсированном режимах по результатам 

испытаний в переменном режиме эквивалентна задаче проверки однородности 

двух выборок: цензурированной выборке наработок до отказа в нормальном 

режиме и полной выборке по всем наработкам до отказа в переменном режиме. 

Для проверки гипотезы однородности применяют критерии типа Колмогорова 

− Смирнова, общий вид статистик которых можно представить в виде 

max ( ( ), ( ))qT P t P t
 

,                          
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где ( )qP t


 – оценка функции надежности по полной выборке, ( )P t


 – оценка 

Каплана − Мейера функции надежности по цензурированной выборке, ( , )x y  

– функция расстояния между ,x y . В случае ограничения продолжительности 

испытаний для проверки гипотезы однородности используют критерии типа 

Реньи. 

Применение оценок Каплана − Мейера позволяет также проверять 

соотношения между распределениями наработок до отказа элементов по 

наработкам до отказа сложных технических систем, состоящих из этих 

элементов. В результате таких испытаний возникают независимые 

прогрессивно цензурированные выборки из наработок до отказа элементов.  

Механизм прогрессивного цензурирования заключается в следующем. На 

испытания ставятся n  изделий. Фиксируются целые числа 1 2, , , sr r r , 

1

s

i

i

s r n


  . При отказе первого изделия случайным образом отобранные 1r  

изделий снимаются с испытаний, при отказе второго изделия случайным 

образом отобранные 2r  изделий снимаются с испытаний и т.д. Если 

испытываются N  систем, состоящих из одинакового количества 

последовательно соединенных элементов m , то выборка из отказов систем 

является прогрессивно цензурированной выборкой из наработок до отказа 

элементов с 1ir m  , n N m  . На практике системы, состоящие из 

одинаковых элементов, часто функционируют в различных режимах. Поэтому 

возникает вопрос о проверке однородности распределений наработок до отказа 

элементов, когда в наличии имеются наработки до отказа систем (двух или 

нескольких). Ряд критериев, предназначенных для проверки таких гипотез, 

описан Н. Балакришнаном. Распределение их статистик известно только в 

асимптотике или получено методом Монте-Карло. 

Обобщением задачи проверки гипотезы однородности является проверка 

степенной зависимости между функциями надежности наработок до отказа. Эта 

модель впервые рассмотрена Коксом. Обозначим за 1( )P t  функцию надежности 

наработок до отказа элементов в режиме 1 . Аналогично, 2 ( )P t  – функция 

надежности наработок до отказа в режиме 2 .  Тогда проверяемая гипотеза 

имеет вид  0 1 2: ( ) ( ) , 1
k

H P t P t k  .  

Во второй главе показано, что использование оценок Каплана − Мейера 

функции надежности дает возможность существенно сократить объѐм и 

продолжительность предварительных исследований, предназначенных для 

оценки коэффициента ускорения испытаний.  

Предположим, что задана линейная функция ( )x k x  , связывающая 

наработки изделия 0 ,   в режимах 0,   с помощью соотношения 

0 0:H k  .                                                  (1) 

Пусть изделия в количестве N mn , разбитые случайным образом на n  

групп по m  изделий, начинают испытываться в режиме 0 , и, при первом 
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отказе изделия в группе, оставшиеся  1m  изделия переключаются в  . 

Обозначим 1 2, ,...,i i i

m    – теоретические наработки до отказа в режиме 0  

изделий i -й группы, 
0 0 1 0 ( 1), ,...,i i i i i

m         – реальные времена работы 

изделий i -й группы. Тогда  0 1min ,...,i i i

m   . Величины  1 0 1

i i i     , 

…,  ( 1) 0 ( 1)

i i i

m m        назовѐм «прогнозными» наработками изделия в 

нормальном режиме. Введѐм две выборки:  1 1 1

0 1 ( 1) 0 1 ( 1), ,..., ,..., , ,...,n n n

m mQ         

– объединенную выборку из всех наблюдаемых и «прогнозных» наработок 

изделий,  1

0 0,..., n    – выборку из наработок до первого отказа изделия в 

каждой группе. Выборку   можно рассматривать как прогрессивно 

цензурированную выборку из совокупности с 0 0( ) 1 ( )F t P t  . Тогда при 

справедливости (1) можно оценить функцию надежности 0 ( )P t  по выборкам Q  

и   согласно следующим формулам: 

 

 

 

 

 

 
1

1

1

1

1

1, 0;

1
1 , 1 ( 1);

1

0, ,

d t

i

d t

P t d t n
m n i

d t n





 


 
     

  
 




 
 21 ,q

d t
P t

mn
 


 

где    1 2,d t d t  – количество элементов выборок   и Q , меньших t .  

Задача проверки гипотезы (1) эквивалентна проверке гипотезы о том, что 

две выборки   и Q  извлечены из одной совокупности 
1

0 : ( ) ( )qH P t P t .                                                   (2) 

Для сокращения продолжительности предварительных исследований 

испытания предлагается проводить следующим образом. Пусть 0 1    – 

некоторое фиксированное число – параметр Реньи. Тогда испытания 

прекращаются в момент времени  , когда нарушается неравенство 

( ( )) 1 ,qP   


 где  1( ) 1 (1 )m mx x m x x    . Для проверки справедливости 

гипотезы однородности (2) в работе впервые разработан критерий типа Реньи, 

статистика которого имеет вид 

( ) 1

(1 )
max

q

q

P
q

P Pn
R m

P




  







 

 .                                        (3) 

Статистика R  может быть представлена в эквивалентном виде  

*
*

*
1

(1 )
max
q

q

P
q

P Pn
R m

P








  


 

 

 ,                                          (4) 

более удобном для вычислений. Здесь 
r

mn





  – глубина цензурирования, 

* 1 (1 )     , r – количество наблюдаемых наработок 
1 2

0 0 0... r       ,  – 
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количество «прогнозных» наработок 
0 ( )i i i

j j     , для которых справедливо 

неравенство , 1, 1i

j j m    .  

В работе доказана теорема, задающая предельное распределение (3). 

Теорема 1. При n и справедливости (2) распределение статистики 

(3) сходится к стандартному распределению Реньи 
2 2

2
0

4 ( 1) (2 1)
( ) exp

2 1 8

i

i

i
L h

i h









  
  

  
 . 

Разработан алгоритм, позволяющий вычислять точные распределения 

статистики (3). Алгоритм основан на модели случайного блуждания по 

двумерному массиву ячеек.  

В Таблице 1 приведены значения точных вероятностей ( )nP R h   для 

случая 3m  и 1.78,1.96,2.24h  .  

Таблица 1. 

Значения вероятностей ( )nP R h   при = 0.75, 3m   

n 
h 

1.78 1.96 2.24 

150 0.8669 0.9151 0.9561 

500 0.8613 0.9089 0.9538 

1000 0.8571 0.9054 0.9522 

2000 0.8552 0.9036 0.9519 

3000 0.8538 0.9030 0.9515 

   0.8498 0.9000 0.9498 

 

В качестве оценки коэффициента ускорения испытаний в диссертации 

предложено использовать значение k


, которое минимизирует значение 

статистики (4), argmink R




. Методом Монте-Карло проведено 

моделирование оценки коэффициента ускорения. На Рис. 1 изображены 

гистограммы полученных k


 для различных наборов , ,m n   для 

экспоненциального распределения с параметром 0.001  . 

 

                     
                        2, 0.6m                                        3, 0.8m    

Рис. 1. Гистограммы оценок k


 при 100, 3n k   
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На практике возникают случаи, когда переключение в форсированный 

режим производится после появления второго отказа в группе. Для этого 

случая автором впервые предложен метод вычислений точных распределений 

статистик типа Колмогорова – Смирнова, сравнивающий оценки функции 

надежности по полной и цензурированной выборкам.  

Пусть 01 02,i i   – первая и вторая порядковые статистики из наработок до 

отказа в режиме 0  изделий i -й группы объѐма m , 01 02

i i  . Обозначим 

1 2 ...i i i

m        – реальные наработки до отказа изделий i -й группы в режиме 

 . Пусть 1 2 ...i i i

m      – теоретические наработки до отказа в режиме 0  

изделий i -й группы, 1 01 2 02,i i i i     . Определим величины 

 1 01 2 02 3 02 3, ,i i i i i i i           ,…,  02

i i i

m m      – наблюдаемые и 

«прогнозные» наработки изделий в нормальном режиме. 

Пусть 0 ( )P t  – функция надежности изделий в режиме 0 . Если 

справедлива гипотеза (1), то 0 ( )P t  можно оценить по выборке 

 1 1

1 1, , , , , ,n n

m mQ         – объединѐнной выборке из наблюдаемых и 

«прогнозных» наработок до отказа:  
 21q

d t
P t

mn
 


. Также 0 ( )P t  можно оценить 

при помощи оценки Каплана − Мейера по цензурированной выборке 

01 02{ , , 1, }i i i n   :  

1

1

( )

1

1

1

1, ( ) 0;

1
( ) 1 , 1 ( ) 2 1;

0, ( ) 2 ,

d t

j j

d t

P t d t n
S

d t n








 
       
  
 




 

где jS  – количество изделий, работающих в нормальном режиме 

непосредственно перед j -м отказом выборки .  

Для рассматриваемого случая величины jS , а, следовательно, и ( )P t


 

зависят от того, сколько среди 1( )d t  отказов 01

i .  

Рассмотрим вариационный ряд  1 2 2n        элементов выборки 

.  Введѐм вектор 1 2( , ,..., ),n   


 1 22 2n n       , определяющий 

взаимное расположение  
01 02, , 1,i i i n    в вариационном ряду. Здесь 

j  − ранг j -

го по величине значения 
02

i  в выборке  . 

Пусть iV  − количество элементов 
02

k  на первых  1i   местах ряда  . 

Точные распределения статистик типа Колмогорова − Смирнова 

max ( ( ), ( ))qT P t P t
 

, применяемых для проверки гипотезы (2), в работе 

предложено вычислять по формуле полной вероятности 
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  ( / ) ( )
v

P T h P T h P    
 

. Автором доказаны теоремы, позволяющие 

вычислять вероятности ( / ), ( )P T h P 
 

, а также приведѐн алгоритм перебора 

всех возможных векторов 


. 

Теорема 2.  

 

 

1

2

1

( 1) ! 2 1

( )

1 ( 2)

n
n n

i

i

n

i

i

m m n i

P

mn i V m



 



  



   






. 

Обозначим       1, : 0 ( 2) , 0,с сA i j i j с m с n           , lB  − 

число вторых отказов в группах среди общего числа отказов всех изделий до l -

го места в вариационном ряду, составленном из элементов выборки Q . 

Положим 
0

,
i

ij d

d

p 


   11 1 2 1 ( 2) ,если 1,2 1,d d jn d m n B d n          

 1,d   если 0, 0,dd    если 2 ;d n

 

1ij

i j
q

m n


 


.  

Зададим  
   

   
0

0

1, ,

0, ,
ij

i j A h
h

i j A h


 
 


 − индикатор множества 

       0 , ( , )ij ijA h i j A p q h     . 

Теорема 3. Вероятность  /P T h 


 равна величине    2 , 2n n m
h


, 

которую можно получить применением рекуррентного соотношения 

 

 
 

 
 

 

          

1

1, , 1

2 1 2 1

1 1

( ), , ;

0, 1 1 1 2 1 2 , 0,

i j i j

i j i j

ij
ij

c

mn B m i B m j
h h

mn i j mn i j
h

h i j A

j i c m j c m c n



 






  

 

          
    

      


 

             



 

с начальными условиями  00 0h  .  

Для проведения расчѐтов в работе рассмотрен случай, когда статистика T  

имеет вид

 

     

    

1

1
max

1 1

m

q q

mt
q q

P t P t P t
T m n

mP t P t










 

  

  . 

В Таблице 2 приведены результаты расчѐта вероятностей точных 

распределений статистики типа Колмогорова – Смирнова T  для случая  

4,5m  , 0.7h   для различных n .  

 

 

 

 



10 

Таблица 2. 

Точные вероятности  P T h
 
для 0.7h   

 

В третьей главе предложены двухвыборочные критерии для решения 

двух задач. Первая задача – проверка гипотезы однородности распределений 

наработок до отказа элементов в различных режимах, если в этих режимах 

проводятся испытания не самих элементов, а последовательных или 

параллельных систем, составленных из них. Вторая задача – проверка 

справедливости модели Кокса между интенсивностями отказов элементов по 

результатам аналогичных испытаний. Предложенные критерии основаны на 

сравнении оценок Каплана − Мейера функций надежности и являются 

состоятельными против любого класса альтернатив. В автореферате приведены 

результаты для последовательных систем, для параллельных систем изменения 

очевидны. 

На испытания ставятся 1n  последовательных систем длины 1m  в режиме 

1  и 2n  последовательных систем длины 2m  в режиме 2 . Системы составлены 

из однотипных изделий. Обозначим    1 21 1

1 01 01 2 02 02,..., , ,...,n n        – выборки 

из наработок до отказа систем. Функцию надежности по прогрессивно 

цензурированным выборкам 1  и 2
 можно оценить при помощи оценок 

Каплана − Мейера: 

 

 

 

 

 

 
1

1, 0;

1
1 , 1 ( 1); 1,2,

1

0, ,

j

j

j

d t

j j

i j j

j j

d t

P t d t n j
m n i

d t n





 


 
      
    







 

где    1 2,d t d t  – количество элементов выборок 1
 и 2 , меньших t .  

Модель Кокса имеет вид 

 0 1 2: ( ) ( ) , 1
k

H P t P t k  ,                                           (5) 

где ( ) 1 ( ), 1,2i iP t F t i    – функции надежности для первой и второй 

независимых выборок в режимах 1  и 2  соответственно. Гипотеза 

однородности является частным случаем гипотезы (5) при 1k  . 

Количество 

групп 

Объѐм групп 

4 5 

7 0.9924 0.9381 

9 0.9924 0.9666 

11 0.9938 0.9818 

13 0.9981 0.9808 

15 0.9984 0.9893 
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Если рассматривать выборки    1 21 1

01 01 02 02,..., , ,...,n n     как полные из 

совокупностей с функциями распределения 11

1( ) 1 ( ( )) ,mF t P t   

22

2( ) 1 ( ( ))mF t P t  , то эти функции можно оценить эмпирическими функциями 

распределения 
1 2,F F

 
, построенными по этим выборкам.  

Для проверки гипотезы (5) в диссертации впервые введена статистика 

 

 
    

2

1 22
1

1

1 2 2

2 2 2

1 2
2 1

( )
max ,

( )

m

k k

mt
m

k

U tm m n
T P t P t

k m m k U t k
 









 
  
    

 


                

(6) 

где    1 2

1 2 2 2
1 2 1 2 1

2 1 2 12 2 2 2 2 2

2 1 2 1 2

( ) 1 1 , , ,
k

m m
n m m k

U t k F k F k k
n m k m m k m




 
      

 

 
.

 
Для случая 2 1 0

m

k
   и ( ) 0U t   положим    

2 2
11

2 1( ) ( ) 0
m m

m
k kU t k U t k
  

  
 

.

 

Для упрощения изложения запишем (6) в виде     
1 2

max , .
t

T P t P t 
 

  

В работе разработан алгоритм вычисления точных вероятностей 

 P T h . Определим  
1, ;

0, .

ij

ij

ij

t h
h

t h



 


 Здесь 

ijt  − значение   при 

1 2

1 2

,
i j

F F
n n

 
 

. 

Теорема 4.  P T h  равна величине  
1 2,n n h , которую можно получить 

применением рекуррентного соотношения  

 

 
   

 

 
   

 

 

1 1

1,

1 1 2 2

1 2

2 2

, 1

1 1 2 2

1

1
, 1 , 1

1

1

i j

ij ij

i j

km n i
h

km n i m n j
h h i n j n

m n j
h

km n i m n j



 







  
 

         
  
 
     

  

при    0,0 1, 20, 0, 0, ,jh h j n      , 1 10, 0, .i h i n     

В Таблице 3 приведены вычисленные точные вероятности ( )P T h .  

Таблица 3. 

Точные вероятности ( )P T h в случае равных объѐмов выборок при m1=2, m2=2 

n1=n2 ( )P T h  

h=1.22 h=1.36 h=1.63 

1.5k   3k   1.5k   3k   1.5k   3k   

300 0.9060 0.9014 0.9551 0.9518 0.9911 0.9901 

700 0.9041 0.9028 0.9536 0.9530 0.9908 0.9906 

1100 0.9029 0.9021 0.9530 0.9528 0.9907 0.9906 

1500 0.9020 0.9020 0.9527 0.9525 0.9906 0.9906 

  0.8981 0.8981 0.9505 0.9505 0.9901 0.9901 
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Вид статистики T  связан с тем обстоятельством, что ее распределение 

может быть приближено классическим распределением Колмогорова − 

Смирнова. Для вывода асимптотического распределения без ограничения 

общности можно считать, что функция надежности элементов равна 
( ) 1 , 0 1P t t t    .  

Рассмотрим случайный процесс   1 21( ) ( ) ( ) , 0 1
k

nZ t n P t P t t    
 

, 

определяющий статистику (6).  

Теорема 5. При 0 1s t   , процесс 

  1 2

1 2
12 2 2

1 2

( ) ( ) ( )
k

n

m m
Y t n P t P t

k m m
 


 



 

 

сходится к гауссовскому процессу Y(t) 

с нулевым математическим ожиданием и ковариацией 

   
   

2 2
1

2

2 1

1

1 1
cov , (1 ) .

(1 )

m m
m

k k

m

k

k s k s
Y s Y t t

s





   
    



 

Теорема 6. Существует монотонно возрастающее преобразование 

 t    отрезка [0,1]  на себя: [0,1] [0,1] , при котором процесс 

    
 

2

2
1

1

2 1

(1 ( ))

1 ( )

m

k

m
m

k

W Y

k k

 
  

 






 

 

 является броуновским мостом. 

Тогда следствием теорем 5,6 является то, что асимптотическое 

распределение статистики (6) является классической функцией распределения 

Колмогорова. Однако сходимость очень медленная, что показывают расчеты 

точных вероятностей, приведенные в Таблице 3.  

Полученные результаты также позволяют находить оценку параметра 

модели Кокса. В качестве оценки автором предложено использовать значение 

argmin ( )k T k


 , которое минимизирует (6). Методом Монте-Карло проведено 

исследование точности предложенной оценки параметра Кокса. В качестве 

примера расчѐта рассмотрены экспоненциальное распределение с параметром 

0.001   и распределение Вейбулла с параметрами 0.001, 1.5p   . На Рис. 2 

приведены гистограммы полученных k


 для 1 2 1 22, 3, 100m m n n    . 

                       
   Экспоненциальное распределение                   Распределение Вейбулла 

Рис. 2. Гистограммы оценок k


 при 2k   
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Для экспоненциального распределения 2.05 , 0.36Mk  


, для 

распределения Вейбулла 2.04, 0.37Mk  


.  

В частном случае проверки однородности ( 1k  ) статистика (6) 

использовалась для оценки коэффициента ускорения K  с режима 2  на режим 

1 . В работе предложен алгоритм оценки K , основанный на минимизации 

статистики (6) при 1k  , т.е. argmin
t

K T


 . Методом Монте-Карло исследованы 

свойства K


 для различных 1 1 2 2, , ,m n m n  для ряда распределений. Результаты 

моделирования для экспоненциального распределения при 0.001   
представлены на Рис. 3. 

                         

           1 2 1 22, 3, 100m m n n                              1 2 1 22, 3, 200m m n n     

Рис. 3. Гистограммы K


 для экспоненциального распределения при 3K   

Также в данной главе автором предложен метод проверки (5), когда 

испытания ограничены по времени. Обозначим 1 1r n
 – число отказов систем за 

время испытаний в режиме 1 , 2 2r n  – число отказов систем в режиме 2 . 

Пусть 0 1   – некоторое фиксированное число – параметр Реньи. Тогда 

испытания прекращаются в момент времени  , когда нарушается неравенство 

0( ( )) 1 ,P t  


 где 
2 2

1

2 1( ) / ( ), 0, (0) 0.
m m

m
k kx x k x k x 



     Для проверки 

справедливости (5) разработан критерий типа Реньи, статистика которого имеет 

вид  

    
1 2

0

1 2 2

2 2 2 : ( ( )) 1
01 2

1
max .

( )

k

t P t

P t P tm m n
R

P tk m m

 


 

 

  









 



                

(7) 

Точные вероятности  
1 20 ,( ) ( ) n nP R h P A h     вычисляются 

алгоритмом, аналогичным приведенному в теореме 4 с соответствующим 

преобразованием множества 0A . 

Асимптотическое распределение статистики (7) может быть получено 

аналогично предельному распределению статистики (6). В работе доказана 

теорема об асимптотическом распределении. 

Теорема 7. При 1
1 2

2

, ,
n

n n
n

    и справедливости гипотезы (5) 

распределение статистики (7) сходится к стандартному распределению Реньи. 
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При ограничении продолжительности испытаний в качестве оценки 

параметра Кокса предложено использовать argmink R


. Статистические 

свойства оценки исследовались методом Монте-Карло. Вид гистограмм оценок 

k


 аналогичен гистограммам, представленным на Рис.2.  

В четвертой главе предложен критерий типа Кифера − Гихмана, 

позволяющий проверять гипотезу однородности нескольких прогрессивно 

цензурированных выборок. Критерий основан на сравнении оценок Каплана− 

Мейера функции надежности. 

Пусть имеется q  режимов работы , 1,i i q  . При этом в каждом из 

режимов i  испытывается in  систем, каждая из которых состоит из im  

последовательно соединенных элементов, 1,i q . Пусть ( ), 1,iF t i q  − функция 

распределения наработок до отказа элементов в соответствующем режиме i . 

Проверяемая гипотеза однородности имеет вид: 

0 1 2 0: ( ) ( ) .... ( ) ( ).qH F t F t F t F t                                        (8) 

По испытаниям наблюдаются q  выборок 

     1 21 1 1

1 01 01 2 02 02 0 0,..., , ,..., ,..., ,..., qnn n

q q q           , составленных из наработок 

до отказа систем. Функции надежности элементов   1 ( )i iP t F t   по каждой из 

выборок i  могут быть оценены при помощи оценок Каплана − Мейера  iP t


. 

При этом если рассматривать выборки i  как полные выборки объема in  из 

отказов систем, то функции распределения наработок до отказа систем 

 1 2, ,..., , где 1 1
imq i

iG G G G F    можно оценить обычными эмпирическими 

функциями распределения 
1 2, ,..., qG G G

  
.  

Для проверки (8) предложено использовать статистику вида: 

 
   

2

1
2 1

1 2

( 1)

max ,..., max ,

q

i i

i
q

t t

n P P P q

T f P P 

     

 






 

              (9) 

где 
1

;
q

i
i i

i

n
n n

n




  ; 
1

( );
q

i i

i

P P t


 


 
1

1

1
i

q
m

i

i

i

P G


 


 ; 
1

P
q


  


 ; 

 
2 2

1 12 2
1 1

1 1
1 2

i i

i i

m mq q

i im m
i ii i

P P

m P m P
 

 
 

    
      

   
 

 

 
;  1 12

1

1
1

i

i

mq

i m
i i

P

m P






  




.  

При   , 1, ,i id t n i q   положим  1,..., 0.qf P P 
 

 

В работе разработан метод вычисления точных распределений статистики 

(9). Он основан на q-мерной модели случайного блуждания. 

Теорема 8. Вероятность  2P T h  равна величине  
1 2, , , qn n n h  , которую 

можно определить применением рекуррентного соотношения 
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 

 
 

 

 
 

 

 

1 2

1 2 1 2

1 2

1 1 1

1, ,

1

1

, , , ,

, , 1

1

1

1

q

q q

q

j j j q

i i i

i

j j j j j j

q q q

j j j q

i i i q

i

m n j
h

m n j m

h h
m n j

h

m n j m



 



 



 

 



  
  

    
  

  
  

 
 

    
  







 

с начальными и граничными условиями 

 0, ,0 1,h     1,0, ,0 0, ,0, 1 0.h h     
 
Здесь 

  1 2

1 2

, , ,

, , ,

1, , 0 ;

0, в противном случае.

q

q

j j j i i

j j j

h j n
h








  
 


 

Величины 
1 2, , , qj j j 

 определяются функцией  1,..., qf x x . 

В диссертации показано, что стандартное распределение Кифера – 

Гихмана является приближением предельного распределения статистики 
2T . 

 

Основные результаты диссертационной работы 

 

1. Предложен критерий типа Реньи, позволяющий оценивать 

коэффициент ускорения форсированных испытаний, когда предварительные 

исследования ограничены по времени. Представлены методы вычисления как 

точных, так и асимптотических распределений его статистики. 

2. По результатам испытаний в различных режимах двух выборок 

последовательных систем различной кратности, составленных из однотипных 

элементов, решена задача проверки непараметрических гипотез (однородности 

или Кокса) о распределениях наработок элементов. Для этого в зависимости от 

полноты имеющихся данных разработаны критерии типа Колмогорова – 

Смирнова и Реньи. Представлены методы вычисления точных распределений 

статистик. Доказана сходимость распределения статистик критериев к 

распределениям Колмогорова – Смирнова и Реньи соответственно. Методами 

Монте-Карло исследованы свойства оценок параметра модели Кокса и 

коэффициента ускорения, основанные на минимизации статистик критериев.  

3. Предложен критерий, позволяющий проверять однородность 

нескольких прогрессивно цензурированных выборок. На основе модели 

случайного блуждания по q -мерному массиву ячеек разработан метод 

вычисления точных распределений статистики критерия. Показано, что в 

качестве приближения асимптотического распределения может быть 

использовано распределение Кифера − Гихмана. 
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