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Общая характеристика работы

Актуальность темы. Массивные шины (Рис. 1) широко использу-
ются в транспортных средствах гражданского и военного назначения. Они
являются основным ходовым элементом гусеничных движителей, обеспечи-
вающих повышенную проходимость машин и позволяющих им длительно
передвигаться с высокими скоростями по всем видам дорог.

Рис. 1. Массивная
шина на стен-
де измерения
контактного
давления

Выход из строя массивных шин происходит
в результате механических повреждений и разви-
тия дефектов усталостного и термоусталостного
характера, а также отслоения резинового массива
от обода колеса под действием напряжений сдви-
га. Избежать преждевременного разрушения этих
шин можно лишь при успешном сочетании физико-
механических характеристик резины и геометрии
профиля резинового массива. Критериями успеш-
ного подбора резины и геометрии при разработке
новой конструкции шины являются:

• равномерность распределения по ширине бе-
говой поверхности давления и сил трения;

• снижение сопротивления качению шины;
• уменьшение значений максимальных темпе-

ратур в резиновом массиве;
• снижение напряжений в зонах их концентра-

ции.
В настоящее время оценка того, насколько новая конструкция лучше

удовлетворяет перечисленным критериям по сравнению с существующими
аналогами, проводится на основе анализа результатов стендовых испыта-
ний пробной партии шин. Такой подход требует больших затрат времени и
материальных ресурсов. Поэтому разработка метода расчета сопротивле-
ния качению и теплообразования в массивных шинах является актуальной
задачей. При этом возникает потребность в создании программного обес-
печения, позволяющего эффективно (с минимальными затратами времени
счета и ресурсов ЭВМ) проводить анализ напряженного и теплового состо-
яния шины.

Целью диссертационной работы является разработка метода
прогнозирования потерь при качении и теплообразования в массивных ши-
нах на стадии проектирования на основе простых лабораторных испытаний
образцов резины.

Для реализации поставленной цели проведены следующие
исследования.
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1. Изучены упруго-гистерезисные свойства резины 4Э-1386, используе-
мой при производстве массивных шин.

2. Определены значения параметров математической модели
Бергстрема-Бойс для шинной резины при вязкоупругом цикли-
ческом деформировании.

3. Экспериментально изучены распределения контактных давлений, ха-
рактеристики сопротивления качению и температуры саморазогрева
шины при различных нагрузках.

4. Численно решена вязкоупругая контактная задача свободного стаци-
онарного качения массивной шины по поверхности бегового барабана.
Проведен анализ напряженно-деформированного и теплового состо-
яний шины. Выполнена верификация с экспериментом.

5. Исследовано влияние геометрических параметров шины на основные
характеристики – силу сопротивления качению, максимальную тем-
пературу саморазогрева, максимальное касательное напряжение у по-
верхности обода.
Методы исследования. Работа по экспериментальному исследова-

нию упруго-гистерезисных свойств резины при сжатии коротких цилин-
дрических образцов проведена на электродинамическом стенде ElectroPuls
E1000 фирмы Instron.

Экспериментальное исследование контакта неподвижной массивной
шины с плоской опорной поверхностью проведено в ООО «Шинный
испытательный центр «Вершина» (г. Ярославль) при помощи сенсора
IX500:256.256.16 фирмы XSENSOR Technology Corporation и в лаборатории
кафедры «Прикладная механика» МГТУ им. Н.Э. Баумана (г. Москва) на
стенде Zwick/Roell Z100.

Экспериментальное определение характеристик сопротивления каче-
нию и температуры внутри резинового массива шины в режиме свободно-
го стационарного качения по беговому барабану выполнено в ООО «НТЦ
«НИИШП» (г. Москва) на стенде фирмы Hasbach методом измерения силы
на рычаге.

Численный алгоритм поиска оптимальных значений параметров вяз-
коупругой модели Бергстрема-Бойс для резины реализован на языке ма-
тематического пакета MathWorks MatLab. Для определения НДС массив-
ной шины и расчета поля температур применен метод конечных элементов
(МКЭ). Процедура решения задачи МКЭ реализована на универсальном
языке программирования Си с использованием стандартной библиотеки
Intel MKL.

Научная новизна работы состоит в следующем.
1. Экспериментально изучены упруго-гистерезисные свойства шинной

резины 4Э-1386 в зависимости от частоты, амплитуды и режима на-
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гружения.
2. На основе экспериментальных данных разработан метод определе-

ния значений параметров вязкоупругой модели Бергстрема-Бойс для
шинной резины.

3. Экспериментально изучено распределение контактных давлений при
обжатии массивной шины на плоскую опорную поверхность.

4. Разработан метод решения вязкоупругой контактной задачи стацио-
нарного качения массивной шины.

5. Разработан комплекс программ, реализующих расчет характеристик
сопротивления качению и теплообразования в массивных шинах при
свободном стационарном качении.
Достоверность и обоснованность научных результатов. До-

стоверность используемой вязкоупругой модели подтверждена эксперимен-
тальными данными, полученными на образцах резины. Достоверность ре-
шения задачи качения подтверждена экспериментами на шинообкатном
стенде; проверкой разработанного алгоритма и программы расчета на мо-
дельных и тестовых задачах; опытом практического внедрения достигну-
тых результатов в ООО «НПКЦ «Веском».

Практическая значимость диссертационной работы заключа-
ется в разработке:

1. метода определения значений параметров вязкоупругой модели рези-
ны;

2. алгоритма учета вязких составляющих деформаций при стационар-
ном качении, позволяющего решать задачу вязкоупругости в виде
последовательности упругих задач;

3. комплекса программ расчета напряженно-деформированного и теп-
лового состояния шины при свободном стационарном качении.
Апробация работы. Результаты диссертационной работы доклады-

вались и обсуждались на научных конференциях аспирантов кафедры при-
кладной механики МГТУ им. Н.Э. Баумана (Москва, 2012, 2013, 2014, 2015
г.), на XXV и XXVI симпозиумах «Проблемы шин, РТИ и эластомерных
композитов» (ООО «НТЦ «НИИШП») (Москва, 2014, 2015 г.), на науч-
ном семинаре кафедры «Прикладная механика» МГТУ им. Н.Э. Баума-
на (Москва, 2015, 2016 г.), на научных семинарах в университетах Герма-
нии: Technische Universität Berlin, Leibniz Universität Hannover, Otto-von-
Guericke-Universität Magdeburg (Берлин, Ганновер, Магдебург, 2016 г.).

Отдельные результаты диссертационной работы получены в рамках
работ по Соглашению о предоставлении субсидии № 14.577.21.0023 от 05
июня 2014 г. с Министерством образования и науки Российской Федерации
по теме: «Создание методов и инструментов моделирования композици-
онных материалов с прогнозируемыми прочностными характеристиками».
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Уникальный идентификатор прикладных научных исследований (проекта)
RFMEFI57714X0023.

Реализация работы. Работа нашла применение при проведении
ОКР в ОАО «ЦНИИСМ» (г. Хотьково) и ООО «НПКЦ «Веском», а также
в образовательной деятельности на кафедре прикладной механики МГТУ
им. Н.Э. Баумана.

Публикации. Основные научные результаты диссертации отражены
в 10 научных работах, 6 из которых опубликованы в изданиях, рекомендо-
ванных ВАК РФ, общим объемом 8.28/4.4 п.л.

Структура и объем диссертации. Работа состоит из введения, пя-
ти глав, общих выводов и списка литературы. Она изложена на 173 стра-
ницах машинописного текста с 78 иллюстрациями и 19 таблицами. Библио-
графический список включает 174 наименования. Приложение описано на
22 страницах.

Содержание работы

Во введении обоснована актуальность темы, сформулирована цель
исследования, научная новизна и практическая ценность работы, приведе-
но краткое содержание работы по главам.

В первой главе рассмотрены три главные проблемы:
• математическое описание упругости резины при умеренных дефор-

мациях,
• моделирование вязкоупругости резины при циклическом деформиро-

вании,
• постановка и методы решения контактной задачи качения.

В первом разделе рассмотрены как феноменологические соотноше-
ния упругости (Муни, Ривлин, Бидерман, Валанис-Ландел, Килиан, Огден,
Свенсон, Йох), так и выражения, полученные на основе физического и
структурного представления о поведении материала (Трелоар, Присс, Ген-
рих, Штраубе, Гельмис, Калиске). На основе работ перечисленных авторов
сделан вывод, что физические модели поведения резин в сравнении с фено-
менологическими лучше соответствуют экспериментальным результатам.
Одно из преимуществ этих моделей заключается в том, что они содержат
параметры, возможные значения которых ограничены физическими пред-
ставлениями о структуре материала. Это облегчает задачу идентификации
этих моделей.

В разделе, посвященном описанию вязкоупругого поведения резины,
проанализированы как ранние феноменологические подходы (Вебер, Коль-
рауш, Больцман, Вольтерра, Максвелл, Томсон), так и более поздние ра-
боты (Грин, Тобольский, Люблинер, Симо, Хольцапфель, Риз, Говинджи,
Бергстрем, Бойс). В работах Грина, Тобольского, Люблинера, Симо, Холь-
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цапфеля вязкое поведение среды описывалось при помощи тензоров внут-
ренних переменных, изменение которых во времени определялось линейны-
ми эволюционными уравнениями. Применение этих соотношений к реше-
нию задачи качения массивных шин отражено в большом количестве работ
(Батра, Фариа, Оден, Насдала, Калиске, Накенхорст). Однако в них от-
сутствует сопоставление результатов расчета с экспериментом, вследствие
чего невозможно сделать вывод об успешном применении названных моде-
лей.

В работах Риза, Говинджи, Бергстрема, Бойс были предложены нели-
нейные эволюционные уравнения, позволяющие проводить анализ систем,
испытывающих большие возмущения относительно состояния термодина-
мического равновесия. В частности, для модели материала Бергстрема-
Бойс связь между вязкими деформациями и напряжениями задавалась
по аналогии с ассоциированным законом течения с параметром упрочне-
ния, равным средней кратности изменения длины субцепи макромолекулы.
Тщательная экспериментальная проверка этой модели показала ее при-
годность для описания процессов деформирования резин, происходящих с
умеренно высокими скоростями. Вследствие чего она применена автором
для анализа рассеяния энергии внутри резинового массива шины. В дис-
сертационной работе эта модель использовалась в следующем виде:

𝜎 = 𝐾𝜃1 + 2𝐺𝐴𝑒 + 𝑠v , (1)
𝑠v = 2𝐺𝐵 (𝑒− 𝑒v) , (2)
𝑑𝑒v

𝑑𝑡
= 𝛾̇

𝑠v√
2𝜏𝐵

, (3)

𝛾̇ =
𝐴𝜏𝑚𝐵

(𝜆𝑐ℎ𝑎𝑖𝑛 − 1 + 𝜆0)
𝑛 , (4)

где функции с верхним индексом v относятся к вязкой структуре матери-
ала; 𝜎 – тензор напряжений Коши; 𝜀 – тензор деформаций; 𝐾 – модуль
объемного сжатия; 𝜃 – объемная деформация; 𝐺𝐴, 𝐺𝐵 – равновесный и ре-
лаксационный модули сдвига; 𝑒, 𝑒v, 𝑠v – девиаторы деформаций и напря-
жений и их вязкие составляющие; 𝜏𝐵 – интенсивность касательных напря-
жений в вязком звене; 𝜆𝑐ℎ𝑎𝑖𝑛 – кратность усредненного вязкого удлинения
макромолекулярной цепи эластомера; 𝐴,𝑚, 𝑛 – параметры закона дефор-
мирования; 𝜆0 – малая постоянная величина, добавляемая, чтобы описать
скорость ползучести при нулевой деформации.

Литературы, посвященной применению нелинейных эволюционных
уравнений вязкоупругости к решению задачи качения, сравнительно ма-
ло (Ле Таллек, Рахиер). Применение этих уравнений требует разработки
специального метода определения напряжений.

В третьм разделе рассмотрены различные формулировки и способы
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решения контактной задачи качения, описанные в работах Батра, Гольд-
штейна, Спектора, Падована, Одена, Лина, Накенхорста, Белкина, Один-
цова. На их основе автором предложен подход к решению вязкоупругой
контактной задачи качения шины по барабану.

Во второй главе приведены результаты экспериментального иссле-
дования упруго-гистерезисных свойств резины при циклическом гармони-
ческом и трапецеидальном пульсационном сжатии образцов, изготовлен-
ных из смеси 4Э-1386, используемой для производства массивных шин.
Исследовано влияние амплитуды, частоты и формы цикла нагружения на
удельную рассеянную энергию и относительный гистерезис.

В качестве примера на Pис. 2 представлены установившиеся гисте-
резисные петли, полученные при пульсационном гармоническом и трапе-
цеидальном воздействии с размахом условного напряжения 2,55 МПа и
различными частотами. На основе полученных экспериментальных дан-
ных установлено, что в обоих случаях частота нагружения 𝜈 практически
не влияет на величину рассеиваемой энергии. При трапецеидальном воз-
действии рассеиваемая за один цикл удельная энергия больше, чем при
гармоническом нагружении.
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Рис. 2. Гистерезисные петли, полученные при размахе напряжения
2,55 МПа

В результате обработки проведенных экспериментов на гармониче-
ское пульсационное сжатие получены эмпирические соотношения между
размахами условных напряжений 𝜎𝑅, размахами деформаций 𝜀𝑅 и удель-
ной рассеянной энергией за один цикл нагружения 𝑞, справедливые при
деформациях, характерных для массивных шин,

𝜎𝑅 ∼= 𝐸𝑅 · 𝜀𝑅 , 𝑞 ∼= Г · (𝜎𝑅)2 . (5)
Для теоретического представления полученных экспериментальных

результатов использовалась модель вязкоупругого поведения материала
Бергстрема-Бойс (1) - (4) при одноосном циклическом сжатии. Для сокра-
щения числа неизвестных параметров модели модуль объемного сжатия 𝐾,
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малая постоянная деформация 𝜆0 и связь между степенями 𝑚 = 𝑛+1 при-
нимались заданными. Остальные параметры 𝑋 =

{︁
𝐺𝐴, 𝐺𝐵, 𝐴 = 𝐴/𝜈,𝑚

}︁
определялись из условия минимума относительных отклонений теоретиче-
ски подсчитанных размахов деформации 𝜀𝑡ℎ𝑒𝑜𝑟𝑦𝑅 и рассеянной энергии 𝑞𝑡ℎ𝑒𝑜𝑟𝑦
от результатов эксперимента 𝜀𝑒𝑥𝑝𝑅 и 𝑞𝑒𝑥𝑝. Для этого была составлена функ-
ция цели вида

𝐹𝑚𝑜𝑑(𝑋, 𝜎𝑅) =
∑︁
𝑖

𝐹 (𝑋, 𝜎𝑅, 𝜈𝑖) + Ф (𝑋) , (6)

где

𝐹 (𝑋, 𝜎𝑅, 𝜈) =

(︃
𝜀𝑡ℎ𝑒𝑜𝑟𝑦𝑅 − 𝜀𝑒𝑥𝑝𝑅

𝜀𝑒𝑥𝑝𝑅

)︃2

+

(︂
𝑞𝑡ℎ𝑒𝑜𝑟𝑦 − 𝑞𝑒𝑥𝑝

𝑞𝑒𝑥𝑝

)︂2

; (7)

Ф (𝑋) – штрафная функция. Для поиска вектора 𝑋, обеспечивающего
минимум функции отклонений (6), использовался метод Нелдера-Мида.
В результате минимизации функции цели получены следующие значения
параметров модели:

𝐺𝐴 = 3,9 МПа, 𝐺𝐵 = 3,2 МПа, 𝐴 = 0,36 МПа−𝑚, 𝑚 = 2,

𝐾 = 100 МПа, 𝜆0 = 10−5, 𝑛 = 1.
Для найденных параметров на Рис. 3 сопоставлены расчетные гистере-
зисные петли с экспериментальными. Расхождение между теоретической
и экспериментальной рассеянной за цикл энергией при гармоническом и
трапецеидальном пульсационном сжатии составляет не более 5%.
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Рис. 3. Теоретические и экспериментальные гистерезисные петели

В третьей главе представлены результаты экспериментального ис-
следования силы сопротивления качению и температуры саморазогрева
при различных режимах обкатки шины на барабанном стенде, а также
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результаты изучения контактных давлений. Испытания проведены на мас-
сивной шине типоразмера 630×170.

Определение формы и размеров пятна контакта, а также изучение
распределения контактного давления при статическом обжатии шины на
плоскость выполнялось при помощи сенсора IX500:256.256.16. На Рис. 4
изображено пятно контакта с измеренными значениями давления 𝑝 при
силе обжатия 11,5 кН. По этим значениям построены эпюры контактного
давления для сечений, проходящих через центр пятна контакта (Рис. 5).

0 50 100
0

50

100

150

0.000

0.176

0.353

0.529

0.706

0.882

1.059

1.236

1.412

1.588

1.765

11,5 кН

Окружное направление, мм

О
с
е

в
о

е
 н

а
п
р

а
в
л

е
н
и

е
,
м

м

p, МПа

Рис. 4. Распределение контактного
давления

Исследование зависимости со-
противления качению шины от на-
грузки, скорости качения и темпе-
ратуры выполнялось на барабанном
стенде фирмы Hasbach с диамет-
ром барабана 2000 мм. Установле-
но, что при изменении скорости ка-
чения массивной шины в рабочем
диапазоне от 30 км/ч до 70 км/ч
рост силы сопротивления качению
не превосходит 10% (Рис. 6).

Это обстоятельство позволило
считать силу сопротивления не за-
висящей от скорости качения в рас-
сматриваемом диапазоне скоростей.

На Рис. 7 показаны усредненные по скоростям зависимости силы
сопротивления качению от усилия прижатия шины к барабану для «хо-
лодного» и «разогретого» (при максимальной эксплуатационной нагрузке
17,5 кН и скорости 70 км/ч) состояний шины. Экспериментально измерен-
ные температуры, соответствующие «разогретому» состоянию, показаны в
виде изотерм на Рис. 8 на левой части поперечного сечения шины.
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Рис. 5. Эпюры распределения контактного давления
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Рис. 6. Зависимости силы сопротивления качению от скорости при разных
усилиях прижатия шины к барабану
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В четвертой главе изложено решение задачи свободного стацио-
нарного качения шины по твердой цилиндрической или плоской опорной
поверхности. Схема задачи показана на Рис. 9. Ниже представлена мате-
матическая формулировка задачи.
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Рис. 9. Схема задачи качения массивной шины по барабану
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𝜎(𝑡+ 2𝜋/𝜔) = 𝜎(𝑡) , 𝜀(𝑡+ 2𝜋/𝜔) = 𝜀(𝑡) , (8)
∇ · 𝜎 = 0 , (9)

𝜀(𝜓),𝜎(𝜓) → 0, 𝜓 → 𝜓− ∨ 𝜓 → 𝜓+ , (10)

𝑢 = 0 на 𝜕Ω𝑖
𝜒 , (11)

f = 0 на 𝜕Ω𝑓
𝜒 , (12)

g− < 0, f𝑛 = 0 на 𝜕Ωc
𝜒 , (13)

g− = 0, f𝑛 < 0 на 𝜕Ωc
𝜒 , (14)

|f 𝑡| < 𝜇|f𝑛|, 𝜁 = 0 на 𝜕Ωst
𝜒 , (15)

f 𝑡 = −𝜇|f𝑛|
𝜁

|𝜁|
, 𝜁 ̸= 0 на 𝜕Ωsl

𝜒 , (16)

𝑀𝑟 =

∫︁
𝜕Ωc

𝜒

(𝑟 × f) · 𝑒3 𝑑Ω = 0 , (17)

где 𝜔 – угловая скорость вращения шины; ∇ – набла-оператор; 𝜓−, 𝜓+ –
углы, ограничивающие окрестность области контакта, в которой напряже-
ния и деформации отличны от нуля; 𝑢 – вектор перемещений; 𝜕Ω𝑖

𝜒 – по-
верхность контакта шины с ободом; f , f𝑛, f 𝑡 – поверхностная нагрузка, ее
нормальная и касательная составляющие; 𝜕Ω𝑓

𝜒 – часть внешней поверхно-
сти шины, на которую действуют лишь заданные поверхностные силы; g−
– скалярная функция взаимного проникания контактирующих тел, опре-
деляемая по деформированной конфигурации шины; 𝜕Ωc

𝜒 – часть внешней
поверхности шины, контактирующая с барабаном; 𝜇–коэффициент трения
скольжения; 𝜁 – скорость относительного проскальзывания контактирую-
щих тел; 𝜕Ωst

𝜒 , 𝜕Ωsl
𝜒 – зоны сцепления и скольжения; 𝑀𝑟 – момент на оси

колеса; 𝑟 – радиус-вектор точки поверхности шины; 𝑒3 – единичный орт,
направленный вдоль оси колеса.

Вязкоупругое поведение резины описано с помощью модели Бергстре-
ма - Бойс (1)–(4), числовые параметры которой установлены во второй гла-
ве.

Решение трехмерной задачи вязкоупругости получено приближенно
на основе принципа возможных перемещений Лагранжа
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∫︁
Ω𝜒

⎛⎜⎝𝜎𝑒(𝜓) − 2𝐺𝐵𝜔
−1

𝜓∫︁
𝜓−

𝑒̇𝜈(𝜓)𝑑𝜓

⎞⎟⎠
⏟  ⏞  

𝜎

·· 𝛿𝜀(𝜓) 𝑑𝑉 =

=

∫︁
𝜕Ωc

𝜒

f𝑛𝛿g− 𝑑𝑆 +

∫︁
𝜕Ωc

𝜒

f𝑘𝑡𝛿𝜁𝑘 𝑑𝑆 ,

(18)

где в левой части записана работа внутренних сил, а в правой – ра-
бота сил в контакте; 𝜁𝑘 – относительное проскальзывание контактиру-
ющих точек в осевом (𝑘 = 1) и в окружном (𝑘 = 2) направлениях;
𝜎𝑒 = 𝐾𝜃1 + 2 (𝐺𝐴 +𝐺𝐵) 𝑒 – мгновенные напряжения, определенные по
соотношениям упругости; точкой ˙(∙) обозначена производная по угловой
координате 𝜓.

Выполнение контактных ограничений осуществлялось методом штра-
фа. Для этого в уравнение (18) вводились зависимости

f𝑛 = −𝜖𝑁g−, f𝑘𝑡 = −𝜖𝑇 𝜁𝑘 , (19)
где 𝜖𝑁 , 𝜖𝑇 – параметры штрафа.

Решение вариационного уравнения (18) осуществ-
лялось МКЭ, реализованным в авторской программе.

O

Р
я
д
 К

Э

Гауссова точка

Dyk

w

ek-1 ek

Рис. 10. К определению на-
пряжений

Использовались объемные восьмиузловые
КЭ в форме параллелепипеда с трилиней-
ной аппроксимацией перемещений. В про-
цессе решения полные напряжения 𝜎 опре-
делялись итерационным способом. Для ил-
люстрации алгоритма определения напря-
жений на Рис. 10 схематично представле-
на область шины, разбитая на КЭ. Выде-
лялись ряды КЭ, выстроенные в окруж-
ном направлении, по которым производи-
лось численное интегрирование скоростей

деформаций. Между одноименными гауссовыми точками (т.е. точками с
одинаковыми локальными координатами) двух смежных КЭ, в которых
деформации равны 𝜀𝑘−1, 𝜀𝑘, вводилась линейная аппроксимация

𝜀𝛼 = 𝜀𝑘−1 + 𝛼(𝜀𝑘 − 𝜀𝑘−1), где 𝛼 ∈ [0 , 1] .

Полагая, что вязкие деформации 𝑒v𝑘−1 элемента 𝑘 − 1 известны, последо-
вательно вычислялись коэффициенты метода Рунге-Кутта
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𝑘1 =
∆𝜓𝑘
𝜔

𝑒̇v (𝑒v𝑘−1, 𝜀𝑘−1) , 𝑘2 =
∆𝜓𝑘
𝜔

𝑒̇v
(︂
𝑒v𝑘−1 +

𝑘1

2
, 𝜀0.5

)︂
,

𝑘3 =
∆𝜓𝑘
𝜔

𝑒̇v
(︂
𝑒v𝑘−1 +

𝑘2

2
, 𝜀0.5

)︂
, 𝑘4 =

∆𝜓𝑘
𝜔

𝑒̇v (𝑒v𝑘−1 + 𝑘3, 𝜀𝑘) ,

(20)

где ∆𝜓𝑘 – шаг интегрирования.
При вычислении коэффициентов (20) скорости вязких деформаций

определялись по формулам (3), (4). Окончательно вязкие деформации в
соответствующей гауссовой точке 𝑘-го КЭ вычислялись как

𝑒v𝑘 = 𝑒v𝑘−1 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) . (21)

Далее введением полученных деформаций в выражения (1) и (2) переопре-
делялись напряжения. Описанный процесс интегрирования начинался с
фиктивного (не участвующего в решении задачи) элемента ряда, для ко-
торого напряжения и деформации полагались равными нулю.

По вычисленным полям напряжений и деформаций определялась

мощность внутренних источников теплоты w = 𝜔/2𝜋
2𝜋∫︀
0

𝜎 · · 𝜀̇ 𝑑𝜓, и прово-

дился анализ температур саморазогрева резинового массива шины. Тем-
пературная задача рассматривалась как стационарная осесимметричная и
формулировалась для половины осевого сечения шины следующим обра-
зом:

∇ · (𝑘∇𝑇 ) + w = 0 , (22)
𝑞 = −𝑘∇𝑇 , (23)
𝑞 · 𝑛 = 𝛼 (𝑇 − 𝑇𝑜) на 𝜕𝑆𝑜 , (24)
𝑇 = 𝑇𝑖 на 𝜕𝑆𝑖 , (25)
𝑞 · 𝑛 = 0 на 𝜕𝑆𝑠𝑦𝑚 , (26)

где 𝑘 – коэффициент теплопроводности; 𝑇 – температура внутри резино-
вого массива шины; 𝑞 – тепловой поток; 𝑛 – внешняя нормаль к контуру
осевого сечения шины; 𝑇𝑜 – температура окружающей среды; 𝑇𝑖 – темпера-
тура обода; 𝜕𝑆𝑖, 𝜕𝑆𝑜, 𝜕𝑆𝑠𝑦𝑚 – части контура осевого сечения шины, принад-
лежащие поверхности приклейки резинового массива к металлу, внешней
поверхности шины и плоскости симметрии сечения шины, соответственно.

Температурная задача решалась МКЭ при помощи четырехузловых
билинейных КЭ.

В пятой главе приведены результаты решения трехмерной вязко-
упругой задачи качения шины по беговому барабану. Выполнена подробная
верификация разработанного метода расчета на реальной массивной шине
типоразмера 630 × 170.

12



Сопоставлены результаты расчета контактного давления для непо-
движной шины с данными испытаний, представленными в третьей главе.
Из Рис. 5 видно, что полученные расчетные значения весьма близки к экс-
периментальным.

Приведены результаты численного моделирования качения шины по
барабану радиуса 1000 мм. На Рис. 11 показано распределение нормаль-
ного давления и окружных напряжений сцепления в сечении, проходя-
щем через центр пятна контакта при угловой скорости вращения барабана
𝜔𝑑 = 16,7 рад/с. На этом же рисунке представлена эпюра давления для
неподвижной шины.

Решение задачи проводилось в предположении об отсутствии зон
скольжения. Как следует из Рис. 5, это предположение может нарушаться
на входе и выходе из контакта, где окружные напряжения сцепления сопо-
ставимы по величине с давлением. Чтобы такая неточность не сказывалась
на вычисляемом значении силы сопротивления качению 𝐹𝑅, последняя вы-
ражалась через мощность рассеиваемой в резине энергии

𝐹𝑅 =

∫︀
𝑉

𝜎 ·· 𝜀̇𝑑𝑉

𝜔𝑑𝑅𝑑
. (27)

На Рис. 12 показаны вычисленные по выражению (27) значения силы со-
противления качению при различных силах прижатия шины к барабану
(темные точки на линии 1). Здесь же изображена экспериментальная кри-
вая (линия 2), соответствующая «холодному» состоянию массивной шины.
Между расчетными и экспериментальными результатами наблюдается хо-
рошее соответствие.
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Как показывают расчеты, при фиксированной нагрузке на шину с
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увеличением радиуса бегового барабана происходит снижение силы сопро-
тивления качению. Практический интерес представляет определение соот-
ношения между значениями сопротивления качению по барабану 𝐹𝑅 и по
плоской поверхности дороги 𝐹𝑅∞. Последнему случаю соответствует гра-
фик 3 на Рис. 12. Отношение 𝐹𝑅∞/𝐹𝑅

используется как поправочный коэф-
фициент для получения характеристик шины, катящейся по плоскости, по
результатам испытаний шины на стенде с беговым барабаном. Из сравне-
ния графиков 2, 3 на Рис. 12 следует, что для барабана радиуса 1000 мм
поправочный коэффициент 𝐹𝑅∞/𝐹𝑅 ≈ 0, 75.

Для сопоставления значений температур, получаемых в расчете и в
эксперименте, выполнен анализ качения шины со скоростью 70 км/ч при
пониженной 14,7 кН и максимальной эксплуатационной нагрузке 17,5 кН.
На Рис. 8 построены изолинии температур для нагрузки 17,5 кН. В цен-
тральной части резинового массива, где развиваются наибольшие темпера-
туры, результаты численного моделирования весьма близки к эксперимен-
ту.

Проанализировано влияния конструктивных параметров шины (ши-
рины беговой дорожки 𝐻𝑜 и толщины резинового массива 𝐵) на основные
характеристики – силу сопротивления качению 𝐹𝑅, максимальное каса-
тельное напряжение (𝜎𝑟𝑡)𝑚𝑎𝑥 у поверхности обода, максимальную темпе-
ратуру саморазогрева 𝑇𝑚𝑎𝑥, жесткость шины, характеризуемую обжатием
𝑢0. Анализ проводился для шины 630 × 170 при фиксированном внешнем
радиусе 312,75 мм и радиусе барабана 1000 мм. В качестве параметров на-
гружения задавались максимальная нагрузка 17,5 кН и максимальная ско-
рость 70 км/ч. Результаты этого анализа представлены в виде графиков
на Рис. 13.
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Основные результаты и выводы

1. Экпериментальным путем определены значения удельной рассеянной
энергии и относительного гистерезиса шинной резины 4Э-1386 при
циклическом нагружении с различными частотами и амплитудами.
Установлено, что удельная рассеянная энергия в резине практически
не зависит от частоты нагружения в диапазоне частот от 1 до 20 Гц.

2. Разработан метод определения значений параметров модели
Бергстрема-Бойс вязкоупругого поведения резины при циклическом
деформировании. С помощью предложенного метода обработаны
результаты испытаний образцов резины на циклическое пульса-
ционное сжатие. Путем сравнения результатов математического
моделирования и экспериментов показано, что расхождения в раз-
махах деформаций и рассеянной энергии за один цикл нагружения
не превосходят 10% при разных режимах нагружения.

3. Разработан метод решения вязкоупругой контактной задачи стаци-
онарного качения массивной шины, приводящий к последовательно-
му решению ряда упругих задач с симметричной матрицей жестко-
сти. Вязкоупругие соотношения Бергстрема-Бойс проинтегрированы
вдоль путей «тока» материала методом Рунге-Кутта четвертого по-
рядка точности. Использована гипотеза об укороченной памяти ма-
териала, позволившая исключить из расчета области резинового мас-
сива, значительно удаленные от зоны контакта, и проводить расчет
на не замкнутой в окружном направлении конечно-элементной сетке.

4. Создан комплекс программ расчета характеристик сопротивления ка-
чению и теплообразования в массивных шинах при свободном стаци-
онарном качении.

5. Выполнена верификация предложенного метода расчета характери-
стик сопротивления качению и теплообразования на массивной шине
типоразмера 630×170. Проведено сопоставление теоретических и экс-
периментальных значений силы сопротивления качению и температу-
ры саморазогрева шины при различных режимах обкатки на барабан-
ном стенде, а также контактных давлений при статическом обжатии
на плоскость.

6. Выполнен анализ влияния геометрических параметров массивной
шины на основные характеристики: силу сопротивления качению,
максимальную температуру саморазогрева резинового массива, мак-
симальные касательные напряжения на поверхности приклейки ре-
зины к ободу шины, жесткость.
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