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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования 

В России продолжается создание новых космических транспортных 

средств, функционирующих на основе использования криогенных компонентов 

топлива: жидких водорода, кислорода, метана. Переход компонентов ракетных 

топлив на криогенные является перспективным и приоритетным направлением 

в ракетно-космической отрасли. Важное значение при этом приобретают 

вопросы отработки «криогенной» прочности топливных баков. Опыт работы с 

жидким водородом в нашей стране не так велик по сравнению с американскими 

и европейскими космическими программами. До летных испытаний доведены 

только два водородных бака – это крупногабаритный бак блока «Ц» РН 

«Энергия» (2 пуска) и водородный бак разгонного блока 12КРБ, который 

эксплуатируется в составе индийской ракеты GSLV. Опыта работы с жидким 

метаном и того меньше. 

В преддверии отработки прочности РН и РБ нового поколения 

необходимо усовершенствовать технологии их экспериментальной отработки, в 

том числе в части правильной имитации температурных полей, с учетом новых 

задач и тенденций по сравнению с предшествовавшим периодом. Способы 

усовершенствования методик температурного нагружения изделий при 

проведении лабораторных криогенно-статических испытаний разрабатываются 

с учетом основных целей и задач развития экспериментальной базы отработки 

прочности и динамики, а также основных положений идеологии наземной 

отработки прочности и динамики. 

Объективная необходимость экспериментального исследования 

прочности конструкций при эксплуатационных температурах состоит в том, 

что температурные эффекты могут существенно влиять на прочность и 

жесткость конструкции. Зачетным прочностным статическим испытаниям 

должны подвергаться все разрабатываемые ступени носителей и разгонных 

блоков. При их проведении должны имитироваться эксплуатационные 

температуры испытываемого объекта, поскольку они влияют на свойства 

материалов и, следовательно, на прочность и жесткость конструкции. 

Значительный вклад в решение проблем проведения криогенно-

статических испытаний ракетно-космических конструкций внесли специалисты 

предприятий отрасли, в том числе теоретики и экспериментаторы ЦНИИмаш: 

С.Н. Давыдов, М.Б. Ерофеев, А.В. Кармишин, В.В. Краев, В.М. Санников, 

А.Ф. Сивогривов, С.Н. Сухинин, Я.Г. Осадчий, А.Т. Цыбров и др. Активная 

работа велась и в других научных, испытательных и образовательных центрах, 

таких как РКЦ «Прогресс», ЦАГИ, МГТУ им. Н.Э. Баумана и др. Особо следует 

отметить работы В.Л. Ноткина, В.С. Зарубина, Ю.К. Калинина, Г.А. Дейцера. 

Степень разработанности темы.  

Вопрос отработки прочности криогенных баков возник в конце 70-х годов 

ХХ века, когда появилась задача по отработке прочности водородного бака 

блока «Ц» РН «Энергия» при эксплуатационных температурах. В этот период 

начались активные проработки обликов экспериментальных баз отрасли для 
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проведения криогенно-статических испытаний. Самые известные и крупные из 

них – это корпус комплексных температурно-прочностных испытаний в АО 

«ЦНИИмаш» (г. Королёв), экспериментальные базы в АО «РКЦ «Прогресс» (г. 

Самара) и АО «ГКНПЦ им. М.В. Хруничева» в Фаустово. 

Цель диссертационной работы: 

- разработка методов захолаживания газообразными хладагентами 

криогенных топливных баков ракет космического назначения для повышения 

их конструктивно-массового совершенства путем задания их истинного 

напряженно-деформированного состояния при испытаниях. 

Задачи диссертационной работы: 

- Анализ существующих подходов по захолаживанию криогенных 

топливных баков. 

- Разработка методов захолаживания, позволяющих задать истинное 

напряженно-деформированное состояние криогенных топливных баков ракет 

космического назначения и минимизировать затраты на обеспечение имитации 

эксплуатационной температуры при их прочностных испытаниях. 

- Разработка физико-математической модели теплового состояния 

криогенных баков для предложенных методов захолаживания при их 

прочностных испытаниях с учетом протекания нестационарных процессов. 

- Оценка времени захолаживания криогенных баков рассматриваемыми 

методами с целью разработки методик по их применению. 

- Экспериментальное подтверждение разработанных методов 

захолаживания. 

- Разработка методик по применению предложенных методов 

захолаживания при отработке температурно-статической прочности новых 

изделий ракетно-космической техники. 

Научная новизна работы: 

- впервые разработан и теоретически обоснован метод захолаживания 

криогенных топливных баков посредством циркуляции холодного гелия по 

замкнутому контуру с использованием гелиевого рефрижератора, позволяющий 

проводить охлаждение конструкций до любого температурного уровня, вплоть 

до 20 К; 

- впервые разработан и экспериментально обоснован метод 

захолаживания криогенных топливных баков посредством фонтанирования 

капельно-газовой смеси на внутреннюю поверхность бака специальным 

разбрызгивателем, установленным в верхней части бака, позволяющий 

имитировать в баках температуры, близкие к температуре кипения жидкого 

метана и жидкого кислорода; 

- впервые разработан и теоретически обоснован метод захолаживания 

криогенных топливных баков посредством орошения жидким азотом внешней 

поверхности бака. 

Теоретическая и практическая значимость работы: 

- использование разработанных новых методов на практике позволит 

выявить истинное напряженно-деформированное состояние конструкций РН и 
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РБ, возникающее от воздействия температуры в эксплуатационных условиях, 

повысит достоверность и информативность экспериментальных результатов; 

- использование разработанных методов на практике позволит определить 

истинное массовое совершенство конструкций, в том числе при учете их 

криогенного упрочнения; 

- результаты работы, приведенные в диссертации, применяются в 

настоящее время (Акт внедрения в АО «ЦНИИмаш» от 14.02.2022 г.  № 20023-

0276-2022) и будут использованы в дальнейшем для проведения испытаний 

изделий, разрабатываемых ПАО «РКК «Энергия», АО «ГКНПЦ им. М.В. 

Хруничева», АО «РКЦ «Прогресс». 

Методология и методы исследования 

В работе использованы: 

- аналитические и численные методы решения задач теплообмена в 

сплошной среде, использующие уравнения теплопроводности и теоретические 

основы теплопередачи; 

- экспериментальные методы захолаживания с использованием жидкого 

азота; 

- методы регистрации, обработки и анализа параметров температурных 

полей. 

Положения, выносимые на защиту: 

- метод захолаживания топливных баков ракет-носителей и разгонных 

блоков посредством циркуляции по замкнутому контуру холодного 

газообразного гелия; 

 - метод захолаживания топливных баков ракет-носителей и разгонных 

блоков посредством фонтанирования капельно-газовой смеси на внутреннюю 

поверхность бака специальным разбрызгивателем, установленным в верхней 

части бака. 

- тепловая физико-математическая модель оценки процесса 

захолаживания емкостей криогенными теплоносителями. 

Степень достоверности и апробация результатов.  

Достоверность и практическая ценность разработанных методов 

захолаживания газообразными хладагентами криогенных топливных баков 

ракет космического назначения  при проведении их прочностных испытаний 

подтверждается использованием классических соотношений учения о 

теплообмене, экспериментальными исследованиями и разработанными на их 

основе нормативными документами. 

Апробация работы. 

Результаты проведенных исследований докладывались и обсуждались на 

отраслевых и всероссийских конференциях, в том числе: 

- на молодежной научно-технической конференции «Инновационный 

арсенал молодежи 2012», (г. Санкт-Петербург, 2012 г.); 

- на Международном Аэрокосмическом Конгрессе IAC’12 (г. Москва, 

2012 г.); 
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- на XXXVIII Всероссийской конференции, посвященной 75-летию 

Южно-Уральского государственного университета (г. Миасс Челябинской обл., 

2018 г.); 

- на 64-й Всероссийской научной конференции МФТИ (Москва, 2021 г.). 

Личный вклад автора заключается: 

- в непосредственном участии в разработке метода охлаждения баков 

циркуляцией холодного гелия, его расчетном обосновании, подготовке 

публикаций и личных выступлениях с докладами по выполненной работе; 

- в разработке метода захолаживания топливных баков ракет-носителей и 

разгонных блоков посредством фонтанирования капельно-газовой смеси на 

внутреннюю поверхность бака специальным разбрызгивателем, установленным 

в верхней части бака, его экспериментальном подтверждении, получении и 

обработке результатов эксперимента; 

- в разработке научно-методических основ совершенствования методов 

прочностных испытаний конструкций ракет-носителей и разгонных блоков 

посредством более точного имитирования температурных полей конструкции. 

Публикации. Основные положения и результаты диссертационной 

работы отражены в 12 научных работах, в том числе в 7 статьях в журналах 

Перечня изданий, рекомендованных ВАК РФ и 4 сборниках тезисов 

конференций. 

Объем и структура диссертации.  

Диссертация  состоит из введения, четырех глав, заключения и списка 

использованной литературы из 108 наименований. Она изложена на 146 

страницах, содержит 30 рисунков и 4 таблицы. 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении отражена актуальность темы исследования, 

сформулированы цели и задачи работы. Показаны новизна, а также 

достоверность и обоснованность результатов диссертационной работы. Кратко 

охарактеризованы методы исследования. Представлены теоретическая и 

практическая значимость работы, описана структура диссертации. 

В первой главе приведен обзор существующих методов охлаждения 

конструкций, таких как конвективный способ, а именно: конвективный способ 

захолаживания с помощью жидкого хладоносителя, конвективный способ 

захолаживания  внутри стационарного устройства, конвективный способ 

захолаживания посредством газообразного хладоносителя, контактные методы 

захолаживания. Проанализирована технология охлаждения конструкций 

жидким и газообразным хладагентами. Сформулированы предложения по 

использованию того или иного метода в различных случаях. 

Одно из основных требований к захолаживающим жидкостям – имитация 

физических характеристик криогенных топлив. 

Отмечается, что для имитации температуры жидкого кислорода, то есть  

наиболее близкой к нему по температуре кипения жидкостью, предлагается 

использовать сжиженный аргон. Малая разница в температурах кипения (3 К), 

не очень большая разница в плотностях (примерно в 1,2 раза) и приемлемая 

стоимость делают аргон идеальным веществом для имитации температуры 
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жидкого кислорода. Жидкий азот уступает жидкому аргону как в разнице 

температур, так и в разнице плотностей кипящих жидкостей, единственное 

преимущество – более низкая стоимость. 

Температуру жидкого водорода можно имитировать жидким неоном, 

температура кипения которого всего лишь на 7 К выше. В этом случае разница 

в изменении механических свойств материала баков будет несущественной. Но 

разница в плотностях в 17 раз не позволит проводить испытания водородных 

баков без обезвешивания. Использование жидкого гелия в этом случае 

нецелесообразно из-за слишком низкой температуры и чересчур высокой 

стоимости. 

Автором в целях отработки прочности изделий ракетно-космической 

техники был предложен и экспериментально опробован способ охлаждения 

конструкций парами жидкого азота и теоретически обоснован способ 

охлаждения газообразным гелием. Метод захолаживания конструкций парами 

криогенной жидкости применим для любых низкокипящих жидкостей, но с 

точки зрения пожаровзрывобезопсности и экономической эффективности 

используется жидкий азот (Рисунок 1). Парами жидкого азота возможна 

имитация перспективного ракетного горючего – жидкого метана (минус 

161 
о
С), а также жидкого кислорода (минус 183 

о
С). Осуществить это можно 

двумя способами. Первый способ заключается в том, что в нижнее днище бака 

подается жидкий азот, испаряющиеся пары которого движутся вдоль стенки 

бака, охлаждают ее и выходят через дренажное отверстие в верхнем днище 

бака.  

При осуществлении второго способа жидкий азот подается со стороны 

верхнего днища бака. Желательно для более равномерного и интенсивного 

охлаждения внутри бака в районе верхнего днища установить разбрызгиватель 

с форсунками (Рисунок 2). 

 
Рисунок 1. Схема захолаживания 

бака испаряющимся азотом 

В этом случае капельно-

жидкостная смесь, попадая в область 

стенок бака, начинает опускаться 

вниз бака за счет массовых сил 

инерции, по пути охлаждая стенки 

бака, а затем, нагреваясь, начинает 

подниматься вверх через 

центральную часть бака и выходит 

через дренажное отверстие. 

Данный способ также был 

отработан в ЦНИИмаш, что 

отражено в главе 3 диссертации. 

Следует отметить, что скорость захолаживания бака данным способом 

оказалась намного выше, чем в предыдущем способе. 

Вызывает интерес комбинированный способ охлаждения, совмещающий 

в себя охлаждение испаряющимся азотом, залитым снизу, и азотной капельно-

газовой смесью, подаваемой сверху. Схематично он показан на Рисунке 3. 
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Рисунок 2. Схема захолаживания бака 

испаряющимся азотом сверху 

Рисунок 3. Схема захолаживания бака 

азотом комбинированным способом 

В процессе проведения испытаний происходит большой приток тепла к 

баку со стороны оснастки. Для уменьшения данных теплопритоков 

предлагается между шпангоутом и оснасткой установить кольцо из материала, 

обладающего низким коэффициентом теплопроводности. 

Во второй главе представлены результаты расчетов охлаждения 

водородного, метанового и кислородного баков. Расчеты проведены в 

аналитической постановке.  

Приведено расчетное обоснование возможности охлаждения до 

температуры 20 К (минус 253 
о
С) крупногабаритных емкостей с помощью 

газообразного гелия на примере технологии относительно недорогого и 

взрывобезопасного захолаживания водородного бака (Рисунок 4). 

 
Рисунок 4. Схема охлаждения 

до 20 К крупногабаритных емкостей 

с помощью газообразного гелия 

Суть подобного охлаждения 

заключается в следующем. Через бак 

прокачивается холодный 

газообразный гелий (Рисунок 4). 

Газообразный гелий может быть 

охлажден до низких температур. 

Рассмотрим охлаждение до 

температуры 𝑇2 = 20 К (температура 

жидкого водорода). Гелий 

охлаждается в гелиевом 

рефрижераторе до требуемой 

температуры, после чего подается в 

бак, где, нагреваясь от стенок бака, 

через верхнее днище попадает 

снова в рефрижератор и там охлаждается. Цикл повторяется. 

Бак, теплоизоляция и газ, находящийся внутри бака имеют начальную 

температуру 293 К. Далее в емкость начинает поступать холодный газ (гелий) 

постоянной температурой 20 К. Этот газ вытесняет теплый газ и заполняет 

емкость. По мере поступления холодного газа в емкость понижаются 

температура стенок и теплоизоляции. 
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Расчет проводился по методу тепловых балансов (Рисунок 5). В 

проводимом расчете температура определяется в центре толщины стенки бака. 

Время захолаживания определялось путем решения нестационарного уравнения 

теплопроводности, решаемого явным методом Рунге-Кутты 4-го порядка 

точности. Принималось, что процесс заполнения бака гелием происходит 

гораздо быстрее процесса охлаждения. 

Система обыкновенных дифференциальных уравнений, описывающих 

процесс теплообмена в одномерной постановке, будет иметь вид: 

С𝑝(𝑇1
𝐻𝑒) ∙ 𝜌(𝑇1

𝐻𝑒)
𝜕𝑇1

𝐻𝑒

𝜕𝜏
𝑉1

𝐻𝑒 = С𝑝(𝑇1
𝐻𝑒)𝐺вх(𝑇вх

𝐻𝑒 − 𝑇1
𝐻𝑒)𝐹𝐻𝑒 + 𝛼к

вын(𝑇𝑖
𝐴𝑙 − 𝑇1

𝐻𝑒)𝐹конв; 

𝑇1
𝐻𝑒(0) = 20 К; 

С𝑝(𝑇2
𝐻𝑒) ∙ 𝜌(𝑇2

𝐻𝑒)
𝜕𝑇𝑖

𝐻𝑒

𝜕𝜏
𝑉2

𝐻𝑒 = С𝑝(𝑇2
𝐻𝑒)𝐺вых(𝑇вых

𝐻𝑒 − 𝑇2
𝐻𝑒)𝐹𝐻𝑒 + 𝛼к

вын(𝑇𝑖
𝐴𝑙 − 𝑇2

𝐻𝑒)𝐹конв; 

𝑇2
𝐻𝑒(0) = 20 К; 

𝐶(𝑇𝑖
𝐴𝑙) ∙ 𝜌(𝑇𝑖

𝐴𝑙)
𝜕𝑇𝑖

𝐴𝑙(𝜏)

𝜕𝜏
= −𝛼к

вын(𝑇𝑖
𝐴𝑙 − 𝑇г

𝑖) +
𝜆(𝑇𝑖

𝐴𝑙)

ℎ𝐴𝑙
(𝑇𝑖+1

𝐴𝑙 − 𝑇𝑖
𝐴𝑙) + 

+
𝜆тзп(𝑇𝑖

тзп)

ℎтзп
(𝑇𝑖

тзп − 𝑇𝑖
𝐴𝑙); 

𝑇𝑖
𝐴𝑙(0) = 293 К𝑇𝑖

тзп = 𝑇м; 𝜆тзп(𝑇𝑖
тзп

) = 𝜆эф (𝑇2
𝐴𝑙, 𝑇м) ;  ℎтзп = 𝛿эф 

С𝑝(𝑇𝑖
𝑀) ∙ 𝜌(𝑇𝑖

𝑀)
𝜕𝑇𝑖

𝑀

𝜕𝜏
𝛿ст =

𝜆(𝑇𝑖
𝑀)

ℎ𝐴𝑙

(𝑇𝑖+1
𝑀 − 𝑇𝑖

𝑀) +
𝜆(𝑇𝑖

𝑀)

ℎ𝐴𝑙
(𝑇𝑖

𝑀 − 𝑇𝑖
𝐴𝑙) + 

+𝜀𝑖𝜎 (𝑇𝑖
𝑀4

− 𝑇ср
4 ) − 𝛼к

св(𝑇𝑖
𝑀, 𝑇ср)(𝑇𝑖

𝑀 − 𝑇ср); 

𝑇𝑖
𝑀(0) = 293 К, 

где: 𝐹𝐻𝑒 =
𝜋𝑑2

4
 – площадь сечения потока гелия; 𝐹конв = 𝜋𝑑𝑙 – площадь 

конвективного теплообмена стенки бака с гелием;  𝑉𝑗
𝐻𝑒 =

𝜋𝑑2ℎ𝑗

4
; 𝑗 = 1,2 – объем 

части бака; 𝛼к
вын =

Nu𝑑λ𝐻𝑒

𝑑
. 

Процесс теплообмена между оснасткой и окружающей средой 

характеризуется свободным движением воздуха и таким образом критерий 

Нуссельта определяется произведением чисел Грасгофа и Прандтля при 

обтекании вертикальной стенки свободномолекулярным потоком воздуха: 
𝑁𝑢𝑙 = 0,75(𝐺𝑟(𝑇)Pr (𝑇))0,25;                    

𝐺𝑟𝑙 =
𝑔𝛽𝜌2(𝑇𝑖

тзи − 𝑇ср)𝑙
3

𝜂(𝑇)2
. 

Коэффициент расширения пара определяется выражением: 

𝛽 =
1

𝑇𝑖
𝐻𝑒 ;                                                    

Тогда для коэффициента теплоотдачи получаем: 

𝛼к
св =

Nu𝑙λв(𝑇)

𝑙
. 

Расход паров гелия на входе определяется выражением: 

𝐺вх = √2𝜌вх(𝑝вх − 𝑝). 
Расход паров гелия на выходе определяется выражением: 

𝐺вых =
𝐹др𝑝

√𝑅𝑇п𝑚𝑎𝑥
𝑓 (𝛾,

𝑝0

𝑝
) ; 𝑇п𝑚𝑎𝑥 = 293 К.                                    

Показатель адиабаты паров гелия: 
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𝑓 (𝛾,
𝑝0

𝑝
) =

[
 
 
 
 
 
√

2𝛾

𝛾−1
[(

𝑝0

𝑝
)

2

𝛾
− (

𝑝0

𝑝
)

𝛾+1

𝛾
]  при 

𝑝0

𝑝
≥ (

2

𝛾−1
)

𝛾

𝛾−1

√𝛾 (
2

𝛾−1
)

𝛾+1

𝛾−1
при 

𝑝0

𝑝
≤ (

2

𝛾−1
)

𝛾

𝛾−1

,                         (1) 

𝑅 − газовая постоянная пара; 𝑝0 − давление среды на выходе из емкости; 
𝐹др − площадь дренажного отверстия. 

 
Рисунок 5. Расчетная схема 

 
Рисунок 6. Распределение температур в разных точках бака по времени (кривые 

Т2 и Тм близки друг к другу) 

Анализ результатов показал, что температура стенки бака достигнет 

температуры 20 К не более, чем за 22 часа. Температура бака (шпангоут) в 

точке соприкосновения с силовым кольцом при этом будет иметь значение 

78 К. Температура оснастки в точке соприкосновения с баком при этом 

составляет ~ 79 К (минус 195 
о
С). 

При этом на расстоянии 300 мм от стыка температура оснастки 

составляет 140 К (минус 133 
о
С). На расстоянии 1000 мм от стыка температура 

оснастки составит 233 К (минус 40 
о
С). 

Низкая температура оснастки обусловлена тем, что расчет проводился в 

одномерной постановке. В двумерной постановке температура оснастки 

оценочно должна быть выше примерно на 40 К. 

Если перед испытателями стоит задача свести к минимуму затраты 

времени на захолаживание бака, предлагается его предварительно охладить 

жидким азотом до температуры порядка 80 К одним из вышеуказанных 

0
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способов. Затем по той же технологии продолжить захолаживание бака 

газообразным гелием. Оценим общее время захолаживания по данному 

способу. 

Сначала рассчитаем время охлаждения бака до температуры ~ 80 К. 

Предположим, что бак будет захоложен путем его полной заливки жидким 

азотом. При этом время охлаждения бака будет эквивалентно времени его 

полного заполнения. 

Объемный расход жидкого азота по магистрали определяется по 

формуле:  

𝑄 = 𝑉 ∙ 𝑆, где  

V – скорость потока жидкого азота, [м/с]; 

S – площадь поперечного сечения магистрали, [м
2
].  

При расчете времени заполнения бака пренебрежем количеством 

испарившегося азота. Тогда бак заполнится жидким азотом за время  

𝑡 =
𝑉б

𝑄
=

105 м3

0,038 
м3

с

= 2763 с < 1 ч 

Для простоты расчета примем, что время заполнения бака составит 

порядка одного часа. Аналогично примем, что и время опорожнения жидкого 

азота из бака также произойдет за время порядка 1 ч. 

 Далее определим время охлаждения бака от температуры ~ 80 К до 

температуры 20 К газообразным гелием. 

Методика расчета аналогична той, что представлена выше. Ниже 

приводится график изменения температуры стенки со временем. 

 
Рисунок 7. Зависимость температуры обечайки бака от времени в случае 

захолаживания от 80 К 

 
Рисунок 8. Зависимость температуры стыка силового кольца от времени 

Таким образом получили, что время захолаживания бака газообразным 

гелием в интервале температур 80-20 К составит 17040/3600 ≈ 5 ч. В этом 

случае общее время охлаждения бака от нормальной температуры до 

температуры жидкого водорода составит всего 7 ч. Такой подход позволит 
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произвести захолаживание бака и последующие статические испытания в одну 

рабочую смену. 

Таким образом, выполненные расчеты показали, что охлаждение 

крупногабаритных изделий газообразным гелием до температуры 20 К является 

осуществимой задачей. 

Далее был проведен расчет захолаживания кислородного (метанового) 

бака с использованием газообразного азота по схеме, показанной на Рисунке 2. 

Предположительно, в баке будут происходить следующие процессы: 

жидкий азот, попадая внутрь через верхнее отверстие бака, дробится об среду, 

отдельные капли начинают нагреваться и переходить в газообразное состояние. 

Таким образом, до низа бака доходит капельно-газовая смесь. Достигая стенок 

внизу бака смесь еще больше нагревается и начинает выталкиваться наверх за 

счет новых порций холодного азота и сил конвекции. Поднимаясь вверх пары 

азота охлаждают стенку и выходят через отверстие Ø100 мм в верхнем днище 

бака. 

Бак имел следующие параметры: Ø4,1 м, высота бака с днищами ~ 5 м. 

Снаружи бак был покрыт теплоизоляцией ППУ-17 со средней толщиной 44 мм. 

Считается, что процесс захолаживания стенки зависит от температуры 

азота на линии насыщения и высоты столба жидкого азота. 

Таким образом, получается система обыкновенных дифференциальных 

уравнений, описывающих тепловое состояние конструкции: 

1. Для изотермических узлов алюминиевой конструкции: 

𝐶(𝑇𝑖
𝐴𝑙) ∙ 𝜌(𝑇𝑖

𝐴𝑙) ∙ 𝛿𝐴𝑙

𝜕𝑇𝑖
𝐴𝑙(𝜏)

Δ𝜏
= −𝛼к

вын(Т) ∙ (𝑇𝑖
𝐴𝑙 − 𝑇г

𝑖) +
𝜆(𝑇𝑖

𝐴𝑙)

ℎ𝐴𝑙
(𝑇𝑖+1

𝐴𝑙 − 𝑇𝑖
𝐴𝑙) 

+
𝜆тзп(𝑇𝑖

тзп)

ℎтзп
(𝑇𝑖

тзп − 𝑇𝑖
𝐴𝑙); 𝑇𝑖

𝐴𝑙(0) = 20 К; 

𝛼к
вын =

Nu𝑑λ𝑁

𝑑
. 

Число Нуссельта находится из выражения: 

Nu𝑙 = 0,025 ∙ Re0.8 ∙ Pr0.4 ∙ (1 + (
d

l
)
0.7

). 

2. Для изотермических узлов теплозащитного покрытия: 

𝐶(𝑇𝑖
тзп) ∙ 𝜌(𝑇𝑖

тзп) ∙ 𝛿Не

𝜕𝑇𝑖
𝐴𝑙

Δ𝜏
= −

𝜆тзп(𝑇𝑖
тзп)

ℎтзп
(𝑇𝑖

тзп − 𝑇𝑖
𝐴𝑙) + 𝜀𝑖𝜎(𝑇𝑖

тзп4
− 𝑇ср

4 ) − 𝛼к
св(𝑇𝑖

тзп − 𝑇ср). 

3. Для изотермических узлов азота необходимо решить систему 

уравнений сохранения массы и энергии: 

𝑑𝑉п
𝑁

𝑑𝜏
=

𝐺вх − 𝐺вых − (
𝑉п

𝑁

𝑅𝑁𝑇𝑖
𝑁

𝑑𝑝п
𝑁

𝑑𝑇
−

𝑝п
𝑁𝑉п

𝑁

𝑅𝑁𝑇𝑖
𝑁2)

𝑑𝑇𝑖
𝑁

𝑑𝜏

𝜌п
𝑁 + 𝜌ж

𝑁
; 

𝑑𝑇𝑖
𝑁

𝑑𝜏
=

𝐺вх𝐶ж𝑇вх
𝑁 − 𝐺вых𝐶п𝑇вых

𝑁 + 𝑤 + 𝑇𝑖
𝑁 𝑑𝑉п

𝑁

𝑑𝜏
[𝐶ж𝜌ж

𝑁 + 𝐶п𝜌п
𝑁]

𝐶ж𝜌ж
𝑁(𝑉 − 𝑉п

𝑁) + 𝑇𝑖
𝑁𝜌п

𝑁𝑉п
𝑁 𝑑𝐶п

𝑑𝑇
+ (

𝐶п𝑇𝑖
𝑁𝑉п

𝑁

𝑅𝑁𝑇𝑖
𝑁

𝑑𝑝п
𝑁

𝑑𝑇
+

𝑝п
𝑁𝑉п𝑁𝐶п𝑇𝑖

𝑁

𝑅𝑁𝑇𝑖
𝑁2 )

; 

𝑤 = 𝑟𝑁
𝜕𝑚п

𝑁𝑇𝑖
𝑁

𝜕𝜏
+ 𝛼к

вын(𝑇𝑖
𝐴𝑙 − 𝑇𝑖

𝑁)𝑆б. 
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Выражение для конвективного потока: 
𝑞конв(𝑇) = 𝛼ж(𝑇) ∙ (𝑇𝐴𝑙 − 𝑇ж), если 𝑇 ≤ 𝑇нас 

𝑞конв(𝑇) = 𝛼п(𝑇) ∙ (𝑇𝐴𝑙 − 𝑇п), если 𝑇 ≥ 𝑇нас, где 

ℎ – энтальпия; r – теплота парообразования азота; 𝑉п – объем паровой 

фазы, 𝑉 =
𝜋∙𝑑2

4

𝐻

𝑁
, где N=1…7 – количество узлов; 𝜌п – плотность паровой 

фазы; 𝜌ж – плотность жидкой фазы; 𝛼ж – коэффициент теплоотдачи для 

жидкого азота; 𝛼п – коэффициент теплоотдачи для газообразного азота (пара); 

𝑇ж – температура жидкого азота; 𝑇п – температура газообразного азота (пара); 

𝑇нас – температура насыщения для жидкого азота; 𝑇 – текущая температура 

азота в баке; сп – теплоемкость паровой фазы жидкого азота;  Sб – площадь 

поверхности бака. 

Значения массового расхода азота при входе в бак и при выходе из бака 

находятся из выражений: 

𝐺вх = 𝐹вх√2 ∙ 𝜌𝑁2 ∙ (𝑝вх − 𝑝б), 

где 𝐹вх – площадь входного отверстия, 𝑝вх – давление входного потока жидкого 

азота, 𝑝б – давление среды в баке. 

Массовый расход газообразного азота на выходе из бака: 

𝐺вых =
𝐹вых∙𝑝б

𝑅 ∙ 𝑇𝑝𝑚𝑎𝑥

f (γ,
𝑝0

𝑝б
), 

где f(γ,
𝑝0

𝑝
)  находится по формуле (1), 𝐹вых – площадь выходного 

отверстия, 𝛾 – показатель адиабаты азота, 𝑅 – универсальная газовая 

постоянная, 𝑝б – давление в баке. 

4. Для изотермических узлов силового кольца, сделанного из стали: 

С𝑝(𝑇𝑖
𝑆𝑡) ∙ 𝜌(𝑇𝑖

𝑆𝑡) ∙ 𝛿𝑆𝑡

𝜕𝑇𝑖
𝑆𝑡

Δ𝜏
=

𝜆(𝑇𝑖
𝑆𝑡)

ℎ𝐴𝑙
(𝑇𝑖+1

𝑆𝑡 − 𝑇𝑖
𝑆𝑡) +

𝜆(𝑇𝑖
𝑆𝑡)

ℎ𝐴𝑙
(𝑇𝑖

𝑆𝑡 − 𝑇𝑖
𝐴𝑙) + 

+𝜀𝑖𝜎 (𝑇𝑖
𝑆𝑡4

− 𝑇ср
4 ) − 𝛼к

св(𝑇𝑖
𝑆𝑡 − 𝑇ср). 

Результаты расчета показаны на Рисунке 9. 

 
Рисунок 9. Зависимость от времени температуры стенки бака (Т1), стыка бака с 

оснасткой (Т2) и на расстояние 300 мм от стыка (Т300) 

Таким образом, время захолаживания стенки бака до температуры 80 К 

составит порядка 21000 с (~ 6 ч), до температуры 90 К (температура жидкого 

кислорода) составит порядка 11725 с (~ 3,5 ч), до температуры 112 К 

(температура жидкого метана) составит порядка 7600 с (~ 2,2 ч). 
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В третьей главе приводится обзор экспериментов, в которых 

проводились исследования захолаживания баков газообразным азотом 

различными методами, а именно: парами жидкого азота, парами жидкого азота 

путем сброса давления, азотной капельно-газовой смесью. Эксперименты 

показали, что наиболее эффективным методом захолаживания с точки зрения 

равномерности и скорости является метод захолаживания азотной капельно-

газовой смесью, который и предлагается использовать при наземной 

экспериментальной отработке прочности кислородных и метановых баков. 

Приводится описание экспериментального апробирования метода 

захолаживания баков парами жидкого азота. Захолаживанию были подвергнуты 

имитатор топливного бака РН сверхтяжелого класса и имитатор бака РН 

тяжелого класса. Подача азота осуществлялась как снизу бака, так и сверху для 

определения оптимального варианта. 

При испытаниях имитатора бака диаметром 0,8 м подача азота 

осуществлялась только снизу. Распределение температуры вдоль обечайки 

представлено на Рисунке 10. 

 
Рисунок 10. Зависимость 

температуры стенки 

маломасштабного имитатора бака от 

времени в процессе захолаживания 

При частичном отрыве 

верхнего днища температура 

внешней стенки бака у верхнего 

днища опустилась от плюс 10 
о
С до 

минус 196 
о
С примерно за 12 с 

(самая нижняя кривая). Скорее всего 

это связано с кратковременным 

прохождением жидкого азота вдоль 

обечайки бака. Более низкая 

температура у верхнего днища 

объясняется следующим: при 

разгерметизации бака жидкостно-

капельная азотная смесь с большой 

скоростью поднялась наверх и 

ударилась о препятствие – плоское 

верхнее днище, во время удара 

произошло дробление жидкости на мелкие капли, которые, попав в район 

верхнего шпангоута, быстро его охладили до температуры жидкого азота. 

Вполне вероятно, что в данный момент могло произойти пленочное 

кипение жидкого азота на стенке, которое, обладает очень интенсивной 

теплоотдачей. Разница показаний термопар по высоте бака составила 170 
о
С. 

Дальнейшие исследования (схема по Рисунку 1) проводились на баке 

диаметром 4,1 м. Распределение температуры вдоль обечайки представлено на 

Рисунке 11. Разница показаний термопар по высоте бака составила около 70 
о
С. 

Далее был исследован процесс захолаживания обечайки путем резкого 

сброса давления паров жидкого азота. Отличие от предыдущего способа 

заключалось в том, что изначально захолаживание бака происходило с 

закрытым вентилем дренажа, а затем по достижении определенного уровня 

внутреннего давления, созданного парами азота, дренажный вентиль резко 
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открывался. При этом наблюдалось более интенсивное охлаждение стенок бака 

по сравнению с охлаждением естественной конвекцией парами жидкого азота 

(Рисунок 12). 

  
Рисунок 11. Зависимость температуры 

стенки бака от времени в процессе 

захолаживания парами жидкого азота 

 

Рисунок 12. Зависимость температуры 

стенки бака от времени в процессе  его 

захолаживания парами жидкого азота 

путем сброса давления 

Также были проведены исследовательские испытания, в которых 

захолаживание заключалось в фонтанировании капельно-газовой смеси, 

истекающей из отверстия в верхней части бака на внутреннюю поверхность 

бака. При этом оказалось, что скорость захолаживания бака возросла примерно 

в 2 – 3 раза при меньших затратах азота (Рисунок 13). 

  
Рисунок 13. Зависимость температуры 

стенки бака от времени в процессе 

захолаживания парами жидкого азота 

со стороны верхнего днища 

 

Рисунок 14. Зависимость 

температуры цилиндрической 

обечайки бака от времени в процессе 

захолаживания парами жидкого азота 

со стороны верхнего днища при 

имитации температуры жидкого 

метана 

В четвертой главе приводится описание методики испытаний 

водородных и метановых баков на основе эффективных технологий 



14 

захолаживания крупногабаритных конструкций изделий РКТ. При проведении 

испытаний на прочность метановых баков предлагается использовать метод 

захолаживания азотной капельно-газовой смесью, а водородных баков – метод 

охлаждения холодным газообразным гелием, охлажденным в гелиевом 

рефрижераторе. 

Приведена принципиальная схема гелиевой рефрижераторной установки, 

которую можно реализовать на предприятиях ракетно-космической отрасли для 

отработки прочности криогенных баков (Рисунок 15).  

 
Рисунок 15. Принципиальная схема криогенной гелиевой системы 

1 – ресивер, 2 – компрессор, 3 – теплообменник, 4 – турбодетандер, 5 – 

охлаждаемая емкость с теплоизоляцией, 6 – азотная ванна, 7 – адсорбер 

Даны рекомендации по использованию измерительных средств при 

проведении криогенно-статических испытаний. Приведена схема 

измерительной системы. 

В конце главы предложены способы защиты испытательного 

оборудования и боксов от пагубного воздействия низких температур и 

динамического воздействия, которое может возникнуть при разрушении баков. 

ОСНОВНЫЕ ВЫВОДЫ И ЗАКЛЮЧЕНИЕ 

Решена задача по разработке методов захолаживания газообразными 

хладагентами криогенных топливных баков ракет космического назначения для 

повышения их конструктивно-массового совершенства путем задания 

истинного напряженно-деформированного состояния при испытаниях. 

Достоверность и практическая ценность разработанных методов захолаживания 

подтверждены проведенными экспериментальными исследованиями и 

разработанными на их основе нормативными документами. 

1. Проанализированы существующие методы охлаждения 

конструкций жидкими и газообразными хладагентами. Сформулированы 

предложения по использованию того или иного метода при отработке 

криогенно-статической прочности конкретных классов изделий РКТ. 

2. Разработаны методы, минимизирующие затраты на обеспечение 

точной имитации эксплуатационной температуры криогенных топливных баков 
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ракет-носителей и разгонных блоков при их прочностных испытаниях, а 

именно: метод захолаживания с использованием газообразного гелия; метод 

захолаживания азотной капельно-газовой смесью; метод захолаживания парами 

жидкого азота путем сброса давления. 

3. Разработана физико-математическая модель теплового состояния 

криогенных баков для предложенных методов захолаживания при их 

прочностных испытаниях с учетом протекания нестационарных процессов. 

Результаты расчетов показали, что охлаждение топливных баков газообразным 

хладагентом является реализуемой на практике технологией с 

продолжительностью захолаживания, сопоставимой с продолжительностью 

захолаживания традиционным методом заливкой жидкого азота. 

4. Экспериментально доказана эффективность захолаживания баков 

азотной капельно-газовой смесью, а также парами жидкого азота путем сброса 

давления с точки зрения снижения затрат и времени подготовки к испытаниям 

по сравнению с традиционным подходом. Эксперименты показали, что 

погрешность имитации эксплуатационных температур не превышает 4 оС, при 

этом затраты жидкого азота при применении разработанных методов до 20-ти 

раз ниже, чем при использовании традиционного метода – заливки жидкого 

азота. Методы рекомендуются к применению при отработке кислородных и 

метановых баков ракет космического назначения среднего и тяжелого классов. 

5. На основе полученных результатов, теоретических и 

экспериментальных данных разработаны методики захолаживания метанового, 

кислородного и водородного баков ракет космического назначения. 

Предложены меры защиты испытательных боксов и испытательного 

оборудования от разрушительного воздействия пониженных температур и 

хладагентов при проведении испытаний. 

6. Результаты работы найдут применение при отработке криогенно-

статической прочности конструкций в предприятиях ракетно-космической 

отрасли. Часть разработанных методов внедрено в АО «ЦНИИмаш». Выпущен 

стандарт организации «Имитация эксплуатационных температур и внутреннего 

давления при статических прочностных испытаниях сборок кислородных и 

метановых топливных баков ракет-носителей среднего и тяжелого классов». 
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