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Общая характеристика работы 
Актуальность работы. Всё большая автоматизация и 

интеллектуализация технических систем, их усложнение при одновременном 
росте требований к надёжности и безопасности функционирования 
обусловливают постоянное увеличение насыщенности технических объектов 
разнообразными информационно-измерительными системами. 

Важнейшими элементами любой информационно-измерительной 
системы являются первичные датчики или измерительные преобразователи, 
которые непосредственно воспринимают измеряемую величину и 
вырабатывают сигнал измерительной информации. 

Среди всего многообразия измерительных преобразователей одно из 
главных мест принадлежит датчикам механических величин. 

Одним из наиболее перспективных классов датчиков механических 
величин, прежде всего, для инерциальной навигации, являются волновые 
твердотельные гироскопы (ВТГ). 

Основным функциональным узлом измерительного преобразователя 
является чувствительный элемент, от качества которого в решающей степени 
зависят точность и метрологическая надёжность прибора. 

В качестве упругого чувствительного элемента (УЧЭ) волнового 
твердотельного гироскопа чаще всего используется тонкостенная 
полусферическая оболочка, жёстко соединенная в вершине с основанием 
(Рис. 1, а, б). Принцип действия этих датчиков основан на явлении прецессии 
стоячих   упругих  волн   (собственных   форм):   при   вращении   резонатора,  

  

колеблющегося с частотой, равной одной 
из собственных частот, соответствующая 
собственная форма поворачивается 
(прецессирует) относительно него с 
некоторой угловой скоростью, зависящей 
от     скорости     вращения     резонатора. 

а) б) Угловая   скорость   прецессии   стоячей 
Рис. 1. Чувствительные 

элементы (резонаторы) ВТГ 
волны является выходным сигналом 
измерительного преобразователя. 

В силу этого проблема обеспечения требуемой точности и 
метрологической надёжности ВТГ должна рассматриваться, прежде всего, 
как проблема разработки и создания оболочечных упругих чувствительных 
элементов, имеющих заданный спектр собственных частот и заданные 
собственные формы в данных конкретных условиях эксплуатации. 

При этом необходимо иметь в виду, что собственные частоты и формы 
существенно зависят от конструктивных параметров, прежде всего, 
параметров геометрии и материала резонатора. 

Существующие технологии не могут обеспечить идеального соответствия 
параметров геометрии и материала УЧЭ проектным (номинальным). Поэтому 
решение задачи разработки и создания УЧЭ с заданными собственными 
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частотами и формами требует глубокого теоретического анализа динамики 
тонкостенных оболочек, характеристики материала которых имеют разброс 
относительно номинальных значений, а параметры геометрии – отклонения от 
идеальных, в первую очередь, неосесимметричные, т.е. зависящие от окружной 
координаты. Это обусловлено тем, что такого рода отклонения качественно 
изменяют рабочие характеристики ВТГ, вызывая эффект расщепления спектра 
частот чувствительного элемента. Величина расщепления собственных частот 
УЧЭ является одной из важнейших характеристик точности волнового 
твердотельного гироскопа. 

Кроме того, учитывая, что технологические отклонения параметров 
геометрии и разброс характеристик материала упругих чувствительных 
элементов носят случайный характер, необходим вероятностный анализ их 
влияния на характеристики динамической точности ВТГ. 

Это, в свою очередь, возможно только при наличии эффективных 
методов решения задач динамики произвольных, в первую очередь, 
неосесимметричных, оболочек в детерминированной и вероятностной 
постановках. 

В настоящее время такие методы, применительно к УЧЭ ВТГ в виде 
тонкостенных неосесимметричных оболочек, мало отличающихся от 
оболочек вращения, развиты недостаточно для того, чтобы удовлетворить 
потребности практики проектирования. 

Таким образом, разработка методов расчёта расщепления собственных 
частот упругих чувствительных элементов волнового твердотельного 
гироскопа при наличии неосесимметричных несовершенств параметров их 
геометрии и разброса характеристик материала в детерминированной и 
вероятностной постановках является весьма актуальной. 

Цель работы состоит в повышении точности и метрологической 
надёжности волновых твердотельных гироскопов различного назначения. 

Указанная цель достигается путём решения комплекса следующих задач: 
− разработка методов расчёта расщепления собственных частот 

оболочечных упругих чувствительных элементов ВТГ, имеющих 
детерминированные и случайные несовершенства геометрии, зависящие от 
окружной координаты, и разбросы характеристик материала; 

− создание комплекса алгоритмов и программ для расчёта спектра 
частот свободных колебаний УЧЭ с учётом разброса характеристик их 
материала и малых несовершенств геометрии в детерминированной и 
вероятностной постановках; 

− верификация разработанного программно-алгоритмического 
обеспечения; 

− проведение теоретического анализа и выявление основных 
закономерностей влияния важнейших конструктивных параметров 
неидеальных оболочечных УЧЭ на расщепление спектра частот их 
свободных колебаний; 
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− применение разработанного программно-алгоритмического 
обеспечения к расчёту и проектированию резонаторов ВТГ. 

Методы исследования основаны на фундаментальных положениях 
классической механики, механики деформируемого твёрдого тела и 
вычислительной механики. В работе использован аппарат нелинейной механики 
(асимптотические методы, метод малого параметра), методы прямого 
тензорного исчисления, компьютерной алгебры и теории вероятностей. 

Научная новизна работы состоит в том, что в ней получены новые 
научные результаты:  

– методики расчёта расщепления собственных частот резонаторов ВТГ, 
позволяющие учесть детерминированные и случайные неосесимметричные 
несовершенства формы срединной поверхности и разнотолщинность, а также 
разброс характеристик материала (плотности, коэффициента Пуассона, модуля 
Юнга); 

– зависимости расщепления частот (вероятностных характеристик 
расщепления частот) от конструктивных параметров резонаторов ВТГ с 
несовершенствами указанных типов; 

– закономерности и степень влияния различных конструктивных 
параметров резонаторов с несовершенствами указанных типов на расщепление 
спектра их частот. 

Достоверность результатов, полученных с использованием 
разработанных методик, подтверждена их хорошим совпадением с данными 
проведённых экспериментов, с результатами других исследователей и 
проверкой на модельных и тестовых задачах. 

Практическая значимость работы. Разработанное программно-
алгоритмическое обеспечение доведено до уровня, позволяющего применять 
его в расчётно-проектировочной практике и используется при 
проектировании перспективных приборов, что подтверждается актом о 
внедрении. Его применение позволило повысить характеристики резонаторов 
волновых твердотельных гироскопов и ускорить процесс их проектирования. 

Изложенные в диссертации методы, алгоритмы и программное 
обеспечение могут быть использованы для расчёта и проектирования 
широкого класса УЧЭ оболочечного типа. 

На защиту выносятся следующие основные положения: 
– методики расчёта расщепления собственных частот упругих 

чувствительных элементов ВТГ, имеющих детерминированные и случайные 
несовершенства геометрии, зависящие от окружной координаты, и разбросы 
характеристик материала; 

– результаты теоретического анализа и основные закономерности 
влияния конструктивных параметров резонаторов ВТГ, имеющих 
детерминированные и случайные неосесимметричные несовершенства 
геометрии (формы срединной поверхности, толщины) и технологические 
разбросы характеристик материала (плотности, коэффициента Пуассона, 
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модуля Юнга), на расщепление спектра их частот. 
Апробация работы. Основные положения работы докладывались на: 

Всероссийской научно-технической конференции, посвящённой 170-летию 
МГТУ им. Н.Э. Баумана (Москва, Россия, 2000 г.); 5th Russian-Bavarian 
Conference on Biomedical Engineering (Мюнхен, Германия, 2009 г.); 
IV Международной школе-конференции молодых учёных «Нелинейная 
динамика машин» (Москва, Россия, 2017 г.); научном семинаре кафедры 
прикладной механики МГТУ им. Н.Э. Баумана (Москва, Россия, 2017 г.). 

Реализация работы. Результаты работы внедрены в практику 
проектирования волновых твердотельных гироскопов в АО «Инерциальные 
технологии «Технокомплекса», а также используются в учебном процессе на 
кафедре прикладной механики МГТУ им. Н.Э. Баумана. 

Публикации. Содержание диссертации отражено в 6 научных работах, 
3 из которых опубликованы в журналах, рекомендованных ВАК 
Минобрнауки России. 

Структура работы. Диссертация состоит из введения, четырёх глав, 
заключения, списка литературы и приложения. Общий объём работы 
156 страниц, включая 137 страниц основного текста, содержащего 
37 рисунков, 3 таблицы. Список литературы включает 149 наименований. 

 
Содержание работы 

Во введении обоснована актуальность темы диссертации, 
сформулированы цель работы и решаемые в ней задачи, научная новизна и 
практическая значимость работы. Приведено краткое содержание работы по 
главам. 

В первой главе дан анализ современного состояния проблемы 
точности работы оболочечных упругих чувствительных элементов волновых 
твердотельных гироскопов. 

Исследованы области применения ВТГ и режимы работы их 
чувствительных элементов в условиях эксплуатации. Приведены данные 
литературных источников, показывающие, что ВТГ широко применяется в 
весьма ответственных системах, работающих в тяжёлых внешних условиях.  

Это задаёт чрезвычайно высокий уровень требований к величинам 
расщепления собственных частот УЧЭ ВТГ. 

На сегодняшний день необходимая точность ВТГ обеспечивается 
чрезвычайно трудоёмкими и дорогостоящими процедурами индивидуальной 
балансировки резонатора и селективной сборки прибора. Использование 
таких процедур невозможно в условиях крупносерийного производства.  

В связи с этим важное значение приобретает создание эффективного 
расчётного инструмента, который, с одной стороны, отражал бы все 
важнейшие характеристики реальных изделий и позволял проводить 
адекватный теоретический анализ их работы, а с другой, – был бы достаточно 
экономичным для применения в расчётно-проектировочной практике. 
Наличие такого инструмента позволит повысить точность приборов данного 
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класса при существенной экономии ресурсов. 
Исследования в области математического моделирования динамики 

неидеальных оболочечных упругих элементов, в частности, резонаторов ВТГ, 
ведутся уже много десятилетий. Можно говорить о двух этапах этой работы. 

На первом с использованием приближённых методов (Рэлея–Ритца, 
Бубнова–Галёркина) был исследован ряд физических особенностей динамики 
неидеальных оболочек (А.С. Вольмир, И.Г. Кильдибеков, Н.Ф. Гришин, 
И.А. Горенштейн, В.Д. Кубенко, П.С. Ковальчук, И.В. Корольков, S.A. Tobjas, 
L.R. Koval и др.) и динамики ВТГ (Д.М. Климов, В.Ф. Журавлёв, Н.Е. Егармин, 
D.D. Lynch, V.B. Scott, S.A. Tobjas, I.C. Chen, C.D. Babcock, D.A. Evensen и др.). 
Использование в этих работах приближённых методов определяет, в основном, 
качественный характер полученных результатов и существенно ограничивает 
возможности их непосредственного применения в практике проектирования. 

Второй этап связан с появлением и развитием численных методов. На этом 
этапе на базе моделей оболочек вращения был решён ряд задач о влиянии 
детерминированных осесимметричных погрешностей на собственные частоты и 
формы оболочек, в частности, резонаторов (Н.Ф. Гришин, В.С. Калинин, 
С.О. Шукуров, Т.Д. Каримбаев, О.С. Нарайкин, В.А. Дадонов, L. Liu и др.). 
Кроме того, было исследовано влияние некоторых видов анизотропии материала 
и неравномерности в окружном направлении толщины и плотности резонатора 
на погрешность ВТГ, а также рассмотрен ряд вопросов теории и методов 
проектирования ВТГ (Д.М. Климов, В.Ф. Журавлёв, В.А. Матвеев, 
В.В. Подалков, И.В. Меркурьев, Б.С. Лунин, М.А. Басараб, А.С. Донник, 
В.А. Солдатенков, Ю.К. Грузевич, В.М. Ачильдиев, О.С. Нарайкин, 
А.М. Гуськов, D.D. Lynch, A. Heidari, S.-Y. Choi, F.K. Chowdhury, P. Pai и др.). 

Однако модели, использованные в этих исследованиях, не позволяют 
учесть ряд реальных технологических погрешностей резонаторов, 
оказывающих весьма существенное влияние на работу ВТГ, в первую очередь 
отклонение срединной поверхности УЧЭ от осевой симметрии. 

Кроме того, до настоящего времени в исследованиях не нашёл 
отражения тот факт, что реальные технологические погрешности геометрии и 
материала оболочечных УЧЭ ВТГ носят случайный характер, что требует 
вероятностного анализа их влияния на расщепление частот резонаторов. 

Таким образом, разработка методов расчёта расщепления собственных 
частот резонаторов ВТГ, обеспечивающих максимально полный учёт 
реальных несовершенств их геометрии, прежде всего, неосесимметричных, в 
детерминированной и вероятностной постановках является весьма 
актуальной. 

На основании проведённого анализа сформулированы цель работы и 
задачи, решение которых необходимо для её достижения. 

Вторая глава посвящена разработке и обоснованию математической 
модели слабо отклоняющегося от осевой симметрии оболочечного упругого 
чувствительного элемента волнового твердотельного гироскопа. 

Наиболее отвечающей условиям изготовления и эксплуатации УЧЭ ВТГ 
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является модель тонкостенной оболочки с распределённой массой, срединная 
поверхность которой имеет отклонения от осевой симметрии, замкнутой по 
параллели, переменной по меридиану и параллели толщины (Рис. 2, а, б). Все 
отклонения геометрических параметров от номиналов, зависящие от окружной 

  

координаты, принимаются 
малыми, что соответству-
ет реальному положению 
вещей. Что касается 
геометрии меридиана и 
законов изменения 
параметров оболочки в 
меридиональном направ-
лении, то они могут быть 
произвольными.  

а) б) 
Рис. 2 

Колебания   резонатора  приняты  малыми,  его  материал – линейно-упругим. 
Соотношения геометрических размеров реальных резонаторов ВТГ дают 

возможность при составлении уравнений движения использовать теорию 
оболочек Кирхгофа–Лява.  

Малость отклонений геометрических параметров обусловливает 
близость расщеплённых собственных частот и делает естественным 
применение для решения задачи расчёта расщепления частот резонатора 
аппарата теории возмущений линейных операторов. 

Задача на собственные значения для механической системы в 
одномерном случае может быть записана в виде 

 
    
dy
dx

= Ay − λBy;        x = xH :  CHy = 0,     x = xK :  CKy = 0,  (1) 

где   λ = p2  – квадрат собственной круговой частоты системы (собственное 
значение);  y  – собственный вектор системы (вектор амплитуд обобщённых 
перемещений и обобщённых внутренних сил в произвольном сечении 
системы);   A, B  – квадратные матрицы;   CH , CK  – прямоугольные числовые 
матрицы;    xH,  xK  – начальное и конечное значения переменной  x . 

Для тонкостенной оболочки  x = s  ( s  – длина дуги меридиана, Рис. 2), а 
собственный вектор и вектор сопряжённого решения имеют вид 

 

     

y = u v w ϑ1 BT1 BS1* BQ1
* BM1{ }T

,

v = −BT1 −BS1* −BQ1
* −BM1 u v w ϑ1{ }T

,
 (2) 

где    u,  v,  w  – амплитуды перемещений произвольной точки срединной 
поверхности в направлениях её единичных векторов;  ϑ1  – амплитуда угла 
поворота нормали к срединной поверхности в меридиональной плоскости;  
 B  – параметр Ламе срединной поверхности;     T1,  S1*,  Q1

*  – амплитуды 
отнесённых к единице длины параллели обобщённых мембранной, 
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приведённых сдвигающей и поперечной сил в произвольной точке оболочки, 
соответственно;   M1  – амплитуда отнесённого к единице длины параллели 
обобщённого меридионального изгибающего момента в произвольной точке 
оболочки. 

Собственное значение λ , собственный вектор  y , вектор сопряжённого 
решения  v  и матрицы  A  и  B  коэффициентов системы (1) представляются в 
виде рядов по малому параметру ε : 

 

     

λ = λ0 + ελ1 + ε2λ2 +…,
y = y0 + εy1 + ε2y2 +…,      v = v0 + εv1 + ε2v2 +…,

A = A0 + εA1 + ε2A2 +…,     B = B0 + εB1 + ε2B2 +….
  (3) 

Здесь индексом 0 отмечены соответствующие объекты для идеальной 
системы, а индексами 1, 2, … – их возмущения. 

В дальнейших выкладках удерживаются только линейными по ε  
слагаемыми. С учётом этого получено выражение для линейной части 
возмущения собственного значения  

 

    

Δλ =
v0T ⋅ ΔA − λ0ΔB( )y0ds

0

l

∫

v0T ⋅B0y0ds
0

l

∫
, (4) 

где  ελ1 = Δλ  ,   εA1 = ΔA ,   εB1 = ΔB . 
Возмущение  Δp  круговой частоты связано с Δλ  соотношением: 

    Δp = Δλ 2p0 ,   (5) 
где   p0  – собственная круговая частота идеальной системы. 

Для кратных  λ0  выражение (4) будет давать ряд значений, лежащих в 
некотором интервале   Δλmin , Δλmax⎡⎣ ⎤⎦ .  

Величина расщепления круговой собственной частоты определяется 
выражением 
    ψ = pmax − pmin = Δλmax − Δλmin( ) 2p0 . (6) 

Для определения возмущений  ΔA  и  ΔB  матричных операторов системы уравнений движения неидеальной оболочки, входящих в выражение 
(4), используется подход, основанный на применении вариационного 
принципа Гамильтона и состоящий в следующем.  

Записывается функционал действия по Гамильтону для возмущённой 
оболочки 
  Π =T −U  (7) 
где    T,  U  – кинетическая энергия и потенциальная энергия деформации 
оболочки, соответственно.  

Составляются уравнения Эйлера для функционала (7), представляющие 
собой уравнения движения возмущённой оболочки 
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dy
ds

= Ay − λBy . (8) 

Операторы   A0  и   B0  идеальной оболочки получаются из  A  и  B  при 
нулевых значениях отклонений параметров оболочки от номинальных. 
Соответствующие возмущения  ΔA  и  ΔB  операторов   A0  и   B0  вычисляются 
как     ΔA = A − A0,  ΔB = B − B0. 

Так как координатные линии срединной поверхности неидеальной 
оболочки, вообще говоря, не являются линиями кривизны, при 
формировании функционала (7) во избежание громоздких преобразований 
все выкладки проводятся в прямой тензорной (инвариантной) форме. 

Выражения для кинетической энергии и потенциальной энергии 
деформации возмущённой оболочки имеют вид: 

 
    
T = λ

2
ρhu2AB sin χds

0

2π

∫ dϕ
s
∫ , (9) 

 

    

U = Eh
2 1− µ2( ) Sp ε( )2 − 2 1− µ( ) ε⎛

⎝
⎞
⎠+

⎧
⎨
⎪

⎩⎪0

2π

∫
s
∫

+D 2 ⋅ Sp æ( )2 − 2 1− µ( ) æ⎛
⎝

⎞
⎠}AB sin χdsdϕ,

 (10) 

Здесь   ε = Sym ∇u ⋅ a( )  – тензор деформаций (В.В. Елисеев); 

   æ = Sym ∇ ϑ × n( ) ⋅ a⎡⎣ ⎤⎦  – тензор приращений кривизны; 

  ϑ = a +1 2nn( ) ⋅ ∇ × u( )  – вектор поворота элемента поверхности 
(В.В. Елисеев); ∇  – оператор-градиент на возмущённой поверхности; 
 a = E − nn  – единичный тензор возмущённой поверхности;  E  – единичный 
тензор;  n  – единичный вектор нормали к возмущённой поверхности;  Sym  – 
оператор взятия симметричной части тензора;    s,  ϕ,  A,  B  – гауссовы 
координаты и параметры Ламе возмущённой поверхности, соответственно; 
χ  – угол между координатными линиями;  u  – вектор амплитуд перемещений 
произвольной точки срединной поверхности;    E,  µ,  ρ  – модуль Юнга, 
коэффициент Пуассона и плотность материала оболочки, соответственно;  h  – 
толщина оболочки; 

  D = Eh3 12 1− µ2( )  – цилиндрическая жёсткость. 
Поскольку выражения (4) и (6) получены для обыкновенных 

дифференциальных уравнений, необходимо осуществить переход к 
одномерной задаче. 

Так как колебания оболочки являются гармоническими, можно 
исключить время, записывая все соотношения для амплитудных значений 
соответствующих переменных.  

В силу замкнутости оболочки по параллели все искомые функции могут 
быть представлены рядами Фурье по окружной координате ϕ . При этом, в 
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отличие от оболочки вращения форма колебаний неидеальной оболочки в 
общем случае содержит не одну, а бесконечное множество гармоник по ϕ . 

Вследствие этого разрешающая система уравнений (8) и собственный 
вектор  y  (2) являются бесконечномерными 

 

      

y = u, v , w, ϑ1, BT1, BS1*, BQ1
*, BM1{ } 0( ) , u, v , …, BM1{ } 1( ) , …⎛

⎝

        u, v , …, BM1{ } k( ) , …⎞
⎠

T
,

 (11) 

где  k  – волновое число (номер гармоники ряда Фурье). 
Возмущения матриц системы (8) также будут бесконечномерными и 

распадутся на блоки [8×8]: 
     
ΔA⎡⎣ ⎤⎦ i,j( ) ,  ΔB⎡⎣ ⎤⎦ i,j( ) ,   i, j = 0,1,2,...,k,.... 

В выражение (4) возмущения  ΔA  и  ΔB  входят только в виде 
скалярных произведений    v0T ⋅ ΔAy0  и    v0T ⋅ ΔBy0 . При этом векторы   y0  и   v0  
будут содержать лишь по одному ненулевому блоку 

      

y0 = 0,0,…,0{ } ,…,( u, v , w, ϑ1, BT1, BS1*, BQ1
*, BM1{ } k( ) , 0,0,…,0{ } ,…⎞

⎠

T
;

v0 = 0,0,...,0{ } ,( ..., −BT1, −BS1*, −BQ1
*, −BM1,u,v ,w,ϑ1{ } k( ) , 0,0,...,0{ } ,...⎞⎠

T
.
 (12) 

Таким образом, при вычислении Δλ  все блоки бесконечномерных 
матриц  ΔA  и  ΔB , за исключением блоков 

   
ΔA⎡⎣ ⎤⎦ k,k( ) ,    

ΔB⎡⎣ ⎤⎦ k,k( ) , будут 

умножаться на нулевые элементы. 
Следовательно, для нахождения первого приближения возмущения 

собственного значения, соответствующего волновому числу  k , достаточно 
знания двух блоков 

   
ΔA⎡⎣ ⎤⎦ k,k( ) ,    

ΔB⎡⎣ ⎤⎦ k,k( )  бесконечномерных матричных 

операторов. 
В силу этого вектор перемещений  u  можно представить в виде 

     u = uk s( )coskϕ t1 + vk s( )sinkϕ t2 +wk s( )coskϕ n,  (13) 
где     t1,  t2,  n  – орты возмущенной срединной поверхности. 

С использованием (13) показано, что расщепление частоты, 
соответствующей волновому числу  k , в первом (линейном) приближении 
может быть вызвано лишь гармониками возмущения формы оболочки с 
номером   2k . 

Для вычисления функционала действия по Гамильтону определены 
параметры геометрии возмущённой срединной поверхности. 

Радиус-вектор точки срединной поверхности возмущённой оболочки 
записывается в виде  
     r = r0 + ξ s,ϕ( )n0 , (14) 
где    r0, n0  – радиус-вектор и вектор нормали срединной поверхности 
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идеальной оболочки вращения, соответственно;   ξ s,ϕ( )  – малое отклонение 
возмущённой срединной поверхности от осесимметричной формы (Рис. 2, б). 

В соответствии с приведённым выше результатом выражение для 
функции возмущение формы записывается в виде 
    ξ s,ϕ( ) = ξ2k s( )cos2kϕ. (15) 

С учётом (15) выражения для характеристик геометрии возмущённой 
срединной поверхности в линейном приближении имеют вид: 

     

A = ∂r ∂s ≈ 1+ ξ R10 ;                    B = ∂r ∂ϕ ≈ r0 1+ ξ sinθ0 r0( );
t1 = ∂r A∂s( ) ≈ t10 + ∂ξ ∂s( )n0;     t2 = ∂r B ∂ϕ( ) ≈ t20 + ∂ξ r0 ∂ϕ( )⎡⎣ ⎤⎦n0;

n = t1 × t2
t1 × t2

≈ − ∂ξ ∂s( )t10 − ∂ξ r0 ∂ϕ( )⎡⎣ ⎤⎦ t20 + n0;    cos χ = t1 ⋅ t2 ≈ 0,

(16) 

где     t10,  t20,  n0  – орты срединной поверхности идеальной оболочки;   r0  – 
радиус параллельного круга срединной поверхности идеальной оболочки 
(Рис. 2);  θ0  – угол между нормалью к идеальной срединной поверхности и 
осью её симметрии (Рис. 2);   R10  – радиус кривизны меридионального 
сечения идеальной срединной поверхности. 

Как видно из (16), в линейном приближении координатные линии на 
возмущённой поверхности можно считать ортогональными. 

Подставляя в (9) и (10) выражение (13) и используя (15) и (16), можно 
записать функционалы потенциальной энергии деформации и кинетической 
энергии оболочки 
 

   
U = ΦU s,uk,vk,wk,ϑ1k, ′uk, ′vk, ′wk, ′ϑ1k,Q1k,ξ2k( )ds

s
∫ , (17) 

 
   
T = λ ΦT s,uk,vk,wk,ξ2k( )ds

s
∫ . (18) 

Здесь штрихом обозначена производная по  s . 
Функционал действия по Гамильтону возмущённой оболочки с учётом 

(17), (18) имеет вид  
 

    
Π = L s,uk,vk,wk,ϑ1k, ′uk, ′vk, ′wk, ′ϑ1k,Q1k,ξ2k( )ds

s
∫ , (19) 

где     L = λΦT s,uk,vk,wk,ξ2k( ) − ΦU s,uk,vk,wk,ϑ1k, ′uk, ′vk, ′wk, ′ϑ1k,Q1k,ξ2k( ).  
Для вычисления подынтегрального выражения в (19) был разработан 

специальный программный комплекс «Operator», позволяющий с 
использованием компьютерного пакета Wolfram Mathematica осуществлять в 
аналитическом виде все необходимые преобразования. 

С помощью указанного комплекса для функционала (19) получена 
система уравнений Эйлера (8), возмущения  ΔA  и  ΔB  операторов   A0  и   B0 . 

Для случая малых неосесимметричных возмущений толщины 

   h s,ϕ( ) = h0 + h2k s( )cos2kϕ  процедура определения  ΔA  и  ΔB  полностью 
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аналогична изложенной. 
Изложенный алгоритм был протестирован на примерах расчёта 

неидеального кольцевого резонатора и некруговой цилиндрической оболочки 
с граничными условиями Навье. 

Случайные технологические разбросы параметров геометрии приводят 
к соответствующему случайному разбросу значений расщепления частот. 
Возможность расчётной оценки величины расщепления частот упругих 
элементов обусловлена знанием вероятностных характеристик случайных 
отклонений параметров их геометрии и материала.  

Источником исходных данных для статистического анализа 
технологических погрешностей УЧЭ является непосредственное измерение 
конструктивных параметров готовых упругих элементов. 

Применительно к неосесимметричным отклонениям формы срединной 
поверхности (для толщины резонатора проблема решается совершенно 
аналогично) алгоритм получения функции   ξ s,ϕ( )  по результатам таких 
измерений состоит в следующем. 

По результатам обмеров осевых сечений      sm  m = 1,  2,  …,  M( )  
реальных УЧЭ и сопоставления координат соответствующих точек 
направляющей реального и идеального упругого элемента получаем массив 
значений функции   ξ s,ϕ( )  возмущения формы, заданный на сетке 

     M :  s1 < s2 < … < sM ,      N :  ϕ1 < ϕ2 < … < ϕN  
      ξmn{ } = ξ sm,ϕn( ), m = 1,  2,  …,  M;  n = 1,  2,  …,  N( ) . (20) 

Функция   ξ2k s( )  (15) будет иметь вид 

     ξ2k s( ) = a2k2 s( ) + b2k2 s( )  .  (21) 

где   a2k s( )  и   b2k s( )  – коэффициенты ряда Фурье функции   ξ s,ϕ( ) . 
В большинстве случаев для реальных резонаторов характер зависимости 

возмущений формы от  s  в пределах одной партии слабо изменяется от образца 
к образцу, а для скорости изменения   ξ s,ϕ( )  в меридиональном направлении 
выполняется сильное неравенство  

 
    

L
ξ s,ϕ( )

∂ξ
∂s
1,   

где  L   – характерный размер по меридиану, например длина меридиана УЧЭ. 
Эти обстоятельства позволяют воспользоваться методом канонических 

разложений случайных функций, ограничиваясь первым приближением 
    ξ s,ϕ( ) = ξ 0( ) ϕ( )X s( ),  (22) 

где  ξ
0( ) ϕ( )  – случайная функция ϕ ,  X s( )  – неслучайная функция  s , 

заданные соответствующими дискретными значениями (20). 
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С использованием (22) получается из (21) 

 

   

ξ2k s( ) = 1
π

X s( ) ξ 0( ) ϕ( )cos2kϕdϕ
−π

π

∫
⎛

⎝
⎜

⎞

⎠
⎟

2

+ ξ 0( ) ϕ( )sin2kϕdϕ
−π

π

∫
⎛

⎝
⎜

⎞

⎠
⎟

2

=

= 1 π X s( )ξ2k0( ).

(23) 

Используя результаты обмеров (20) достаточно большого числа 
однотипных элементов и применяя изложенный алгоритм, получим 
эмпирическую случайную выборку значений   ξ2k s( )  (23). Вид соответствующей 
функции плотности вероятностей можно установить, пользуясь известными 
статистическими методами. 

Цель расчёта вероятностных характеристик расщепления   ψ = 2Δp  
собственных частот неидеального УЧЭ состоит в определении плотности 
вероятностей, а также математического ожидания и дисперсии ψ  по 
плотностям вероятностей случайных неосесимметричных отклонений 
параметров геометрии упругого элемента. 

Предложены два варианта алгоритма расчёта вероятностных 
характеристик расщепления собственных частот: при отсутствии априорной 
информации о плотностях вероятностей случайных отклонений параметров 
геометрии и материала и при её наличии. 

В первом случае алгоритм выглядит следующим образом. 
Пусть имеется партия  K  номинально одинаковых чувствительных 

элементов, для которых измеренные значения   ξ2k
0( )  заключены в пределах 

      ξ2k  min
0( ) ≤ ξ2k  j

0( ) ≤ ξ2k  max
0( ) , j = 1,  2,  …,  K   (24) 

Проводится детерминированный расчёт в соответствии с изложенным 

выше алгоритмом и получается зависимость 
  
ψ ξ2k

0( )( )  в интервале 

    
ξ2k  min
0( ) ,ξ2k  max

0( )⎡
⎣⎢

⎤
⎦⎥

 (Рис. 3). Определяется количество   nγ ,    γ = 1,2,…,Γ

   n1 + n2 +…+ nγ +…+ nΓ = K( )  значений    ξ2k  j
0( ) , попавших в каждый интервал 

Δξ  (Рис. 3). По значениям   nγ ,     γ = 1,2,…,Γ  с использованием зависимости 

  
ψ ξ2k

0( )( )  (Рис. 3) определяются параметры гистограммы, служащей 

приближением к плотности    P1(ψ )  распределения случайной величины ψ : 

   
fψγ

= nγ K ,  hψγ
= nγ Kψγ ;

 
где ψγ  – интервал разбиения по ψ  (Рис. 3);  

 
fψγ

 – частота попадания значения ψ  в интервал ψγ ; 
 
hψγ

 – высота 

гистограммы в интервале ψγ .  
По этой гистограмме определяются приближённые значения 

математического ожидания и дисперсии ψ . 
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Рис. 3 

Если плотность    P(ξ2k
0( )) 

распределения   ξ2k
0( )  определена 

путём статистической обработки 
результатов измерений параметров 
готовых УЧЭ, изложенный 
алгоритм модифицируется 
следующим образом. Интервал 

 ψmin,ψmax⎡⎣ ⎤⎦  (Рис.  3)  разбивается  

на  равные интервалы длиной ψγ . 

Случайная величина   ξ2k
0( )

разыгрывается в соответствии с 
алгоритмом метода Монте-Карло. 

С использованием зависимости 
  
ψ ξ2k

0( )( ) , определяются значения случайной 

величины  ψ ∈ ψmin,ψmax⎡⎣ ⎤⎦ . 
Далее определяется количество  nψ  значений расщепления, попавших в 

тот или иной интервал ψγ , вычисляются соответствующие частоты попаданий 
и строится гистограмма, служащая приближением к плотности распределения 

  P1 ψ( )  случайной величины ψ . 
В третьей главе приведены некоторые результаты расчётов расщепления 

частот реальных УЧЭ ВТГ на основе изложенной методики. Получены и 
проанализированы зависимости расщепления от основных конструктивных 
параметров резонаторов. Установлено, какие из этих параметров являются 
проектными, то есть оказывающими наиболее существенное влияние на 
величину расщепления. На Рис. 4, 5 приведены графики зависимостей от 
параметров геометрии величины расщепления ψ  второй собственной частоты  
(  k = 2) полусферических резонаторов из плавленого кварца с 
неосесимметричной срединной поверхностью (Рис. 4) и с неосесимметричной 
разнотолщинностью (Рис. 5) при следующих номинальных значениях основных 
параметров: радиус полусферы   R0 = 30 мм, толщина оболочки    h0 = 0,5 мм, 
радиус ножки    rH0 = 2 мм, коэффициент Пуассона   µ0 = 0,17, модуль Юнга 

  E0 = 75 ГПа, плотность  ρ0 = 2600  кг/м3.  
Анализ полученных результатов позволил выявить ряд важных 

закономерностей. В частности, установлено, что для полусферического 
резонатора проектными параметрами являются  R  и  h , хотя степень их 
влияния на величину расщепления различна для различных диапазонов 
значений самих этих параметров.  

Радиус ножки резонатора не оказывает значимого влияния на величину 
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n1 + n2 +…+ nγ +…+ nΓ = K( )  значений 

   ξ2k  j
0( )  , попавших в каждый такой 

интервал (Рисунок 2.6). Частота 
 
fξγ  попадания в тот или иной интервал 

определяется выражением 

 
     
fξγ =

nγ

K
, γ = 1,  2,  …,  Γ  n1 + n2 +…+ nγ +…+ nΓ = K( ) . (2.94) 

Строя над каждым интервалом Δξ  прямоугольник, высота которого 

равна 
 
fξγ Δξ , получаем гистограмму, которая служит приближением к 

неизвестной плотности 
  
P ξ2k

0( )⎛
⎝

⎞
⎠  распределения случайной величины   ξ2k

0( ) . 

 
Рисунок 2.6 
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расщепления, что согласуется с результатами работы A. Heidari и др. 

 

   
ξ s,ϕ( ) = ξ2k

0( ) s − smin( )2
smax − smin( )2

cos2kϕ  

 

  ξ2k
0( ) = 1  мкм 

 

   smin = R arcsin rH R( )  
 

   smax = πR 2  
Рис. 4. Зависимости величины расщепления частоты от радиуса и 

толщины оболочки 

 

    h s,ϕ( ) = hHOM + h2k s( )cos2kϕ  
 

   h2k s( ) = h2k
0( ) ⋅ cos πs 2smax( ) +1⎡⎣ ⎤⎦

 

   h2k
0( ) hHOM = 10−4 

 

   smax = πR 2 
 

Рис. 5. Зависимости величины расщепления частоты от радиуса и 
толщины оболочки 

Расщепление частоты, вызванное разнотолщинностью, существенно 
меньше расщепления, обусловленного неосесимметричностью срединной 
поверхности. Это означает, что уменьшение несовершенств последнего типа 
является первостепенной задачей. 

Выявлена весьма слабая зависимость расщепления частоты от 
характеристик материала резонатора в реальных диапазонах их изменений, 
что согласуется с результатами Б.С. Лунина. 

Пример результатов расчёта вероятностных характеристик расщепления 
второй собственной частоты полусферического резонатора с указанными выше 
номинальными параметрами дан на Рис. 6.  

  
а)  б)  

Рис. 6. Плотности распределения расщепления частоты при: 
а) неосесимметричных отклонениях формы срединной поверхности; 

б) неосесимметричная разнотолщинность, 

    h2k s( ) = h2k
0( ) ⋅ cos πs 2smax( ) +1⎡⎣ ⎤⎦,  h2k

0( ) = 10−4мм 
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При расчёте плотность распределения случайных величин   ξ2k
0( )  и   h2k

0( )  в 
соответствии с результатами обмеров реальных УЧЭ была принята 
гауссовской. Полученные гистограммы позволяют, в частности, определить 
вероятность нахождения значения расщепления частоты в заданном 
интервале, прогнозируя тем самым процент выхода годных. Это важно как 
при анализе серийного производства, так и при разработке и создании 
элементов нового класса. 

Применение разработанного вычислительного инструментария к 
проектированию резонаторов ВТГ по критерию величины расщепления 
собственных частот основывается на предложенной О.С. Нарайкиным 
методике построения областей работоспособности УЧЭ в пространстве 
проектных параметров. 

В качестве примера на Рис. 7 приведены области работоспособности 

  Qψ
ξ( ) R,h( )  и   Qψ

h( ) R,h( )  по критерию величины расщепления второй  
собственной частоты для полусферического резонатора с номинальными 
параметрами, приведёнными выше. Точки внутри заштрихованных областей 
соответствуют наборам проектных параметров, обеспечивающим 
выполнение условия ограничения величины расщепления частоты. 

  
а)   ξ2k

0( ) = 1  мкм б)     h2k
0( ) = const,  h2k

0( ) hHOM = 10−4  
Рис. 7. Области работоспособности при неосесимметричных:  

а) возмущении формы срединной поверхности; б) разнотолщинности 
Применение областей работоспособности позволяет, в частности, уже 

на этапе проектирования устанавливать оптимальные допуски на проектные 
параметры при различных видах технологических погрешностей.  

Четвёртая глава посвящена экспериментальной проверке адекватности 
разработанной методики. Целью исследования являлось экспериментальное 
определение расщепления частот свободных колебаний резонаторов ВТГ и 
сопоставление опытных данных с результатами соответствующих расчётов. 

Использованы методика и схема измерений, подробно описанные в 
работах В.А. Матвеева, Б.С. Лунина, М.А. Басараба. 

Была испытана партия из 19 серийно выпускаемых резонаторов, 
имеющих одинаковые номинальные значения основных конструктивных 

параметров, приведённые выше. Значения величины   ξ2k
0( ) , получены по 

результатам обмеров каждого из образцов. Несовершенства формы для 
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численных расчётов аппроксимировались функцией 

    ξ s,ϕ( ) = ξ2k
0( ) ⋅ s − smin( )2 smax − smin( )2 cos2kϕ . 

В эксперименте измерялось значение расщепления второй собственной 
частоты. Проводилась статистическая обработка результатов испытаний.  

В результате экспериментального исследования установлено, что 
математическое ожидание расхождения экспериментальных и расчётных 
значений расщепления частоты составляет 5,17%, а среднеквадратичное 
отклонение указанной величины – 0,803%. 

Таким образом, результаты экспериментального исследования 
указывают на адекватность разработанной математической модели УЧЭ ВТГ 
и хорошую точность предложенных методов её численного анализа, что 
является подтверждением достоверности сформулированных в диссертации 
научных положений и полученных результатов. 

Заключение. Общие выводы по работе 
1. Разработаны методики, алгоритм и программное обеспечение расчёта 

расщепления собственных частот резонаторов волнового твердотельного 
гироскопа, имеющих малые детерминированные и случайные несовершенства 
геометрии, зависящие от окружной координаты, и разбросы характеристик 
материала.  

2. Получены зависимости расщепления (вероятностных характеристик 
расщепления) собственных частот от основных конструктивных параметров 
УЧЭ. Установлены основные закономерности влияния конструктивных 
параметров резонаторов на расщепление (вероятностные характеристики 
расщепления) их собственных частот. Выявлены проектные параметры 
резонаторов. 

3. В пространстве проектных параметров построены области 
работоспособности УЧЭ ВТГ по критерию величины расщепления 
собственной частоты. Дана методика получения рациональных проектных 
решений с применением областей работоспособности. 

4. Проведены экспериментальные исследования, подтвердившие 
адекватность разработанной математической модели УЧЭ ВТГ и хорошую 
точность предложенных методов её численного анализа. 

5. Разработанные методики и программно-алгоритмическое обеспечение 
используются в опытно-конструкторских работах ряда предприятий и могут 
быть использованы для расчёта и проектирования широкого класса УЧЭ 
оболочечного типа. 

Использование установленных в диссертации научных положений и 
программно-методических средств позволило повысить точность и 
метрологическую надёжность волновых твердотельных гироскопов 
различного назначения, что подтверждается положительным опытом 
внедрения результатов работы. 
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